×

zbMATH — the first resource for mathematics

Locally testable semigroups. (English) Zbl 0273.20049

MSC:
20M35 Semigroups in automata theory, linguistics, etc.
03D05 Automata and formal grammars in connection with logical questions
20M10 General structure theory for semigroups
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arbib, M. (editor),Algebraic theory of machines, languages and semigroups, Academic Press, New York, 1968. · Zbl 0181.01501
[2] Clifford, A.H., and G.B. Preston,The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence R.I., Vol. I, 1961; Vol. II, 1967. · Zbl 0111.03403
[3] Kaplansky, I.,Fields and rings, University of Chicago Press, Chicago, 1969. · Zbl 0184.24201
[4] Kimura, N.,The structure of idempotent semigroups II, unpublished manuscript.
[5] Krohn, K., J. Rhodes and B. Tilson,Homomorphisms and semi-local theory, in Algebraic theory of machines, languages and semigroups (M. Arbib, ed.) pp. 191–231, Academic Press, New York, 1968.
[6] Lallement, G.,Demi-groups réguliers (Thése, Univ. Paris, 1966), Annali di Matem. pura ed. appl. 77 (1967), 47–130. · Zbl 0186.03302
[7] McNaughton, R. and S. Papert,Counter-free automata, M.I.T. Press, 1971.
[8] McNaughton, R.,Algebraic decision procedures for local testability, to appear in Mathematical System Theory. · Zbl 0287.02022
[9] Magidor, M.,Decomposition theorems for finite sequential machines, Israel J. Math. 6 (1968), 246–260. · Zbl 0313.94023
[10] Morse, M. and G. Hedlund,Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 (1944), 1–15. · Zbl 0063.04115
[11] Petrich, M.,Homomorphisms of semigroups onto normal bands, Acta Math. Szeged 27 (1966), 185–196. · Zbl 0143.03204
[12] Zalcstein, Y.,Locally testable languages, J. Comp. System Sci. 6 (1972), 151–167. · Zbl 0242.68038
[13] Zalcstein, Y.,Studies in the representation theory of finite semigroups, Trans. Amer. Math. Soc. 161 (1971), 71–87. · Zbl 0228.20063
[14] Zalcstein, Y.,Finiteness conditions for matrix semigroups, to appear in Proc. Amer. Math. Soc. · Zbl 0238.20088
[15] Zalcstein, Y.,Syntactic semigroups of some classes of star-free languages, to appear in Automata, Languages and Programming, (M. Nivat, editor), North-Holland Publishing Co., Amsterdam, 1973. · Zbl 0277.94039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.