×

Regular nonnegative matrices. (English) Zbl 0273.20051


MSC:

20M99 Semigroups
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
15B48 Positive matrices and their generalizations; cones of matrices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. · Zbl 0111.03403
[2] Dennison R. Brown, On clans of non-negative matrices, Proc. Amer. Math. Soc. 15 (1964), 671 – 674. · Zbl 0126.04502
[3] H. K. Farahat, The semigroup of doubly-stochastic matrices, Proc. Glasgow Math. Assoc. 7 (1966), 178 – 183 (1966). · Zbl 0156.26001
[4] Peter Flor, On groups of non-negative matrices, Compositio Math. 21 (1969), 376 – 382. · Zbl 0194.34005
[5] J. S. Montague and R. J. Plemmons, Doubly stochastic matrix equations, Israel J. Math. 15 (1973), 216 – 229. · Zbl 0273.15014
[6] Oystein Ore, Theory of monomial groups, Trans. Amer. Math. Soc. 51 (1942), 15 – 64. · JFM 68.0039.01
[7] Štefan Schwarz, On the structure of the semigroup of stochastic matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 297 – 311 (1965) (English, with Russian summary). · Zbl 0143.03303
[8] Štefan Schwarz, A note on the structure of the semigroup of doubly-stochastic matrices., Mat. Časopis Sloven. Akad. Vied 17 (1967), 308 – 316 (English, with Loose Russian summary). · Zbl 0157.04902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.