zbMATH — the first resource for mathematics

Spherical functions on a \(p\)-adic Chevalley group. (English) Zbl 0273.22012

22E35 Analysis on \(p\)-adic Lie groups
11R56 Adèle rings and groups
42A85 Convolution, factorization for one variable harmonic analysis
43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
Full Text: DOI
[1] François Bruhat, Sur une classe du sous-groupes compacts maximaux des groupes de Chevalley sur un corps \?-adique, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 45 – 74 (French). · Zbl 0228.20014
[2] R. Godement, Introduction aux travaux de A. Selberg, Sém, Bourbaki 9 (1956-1957). · Zbl 0202.40902
[3] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[4] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of \?-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5 – 48. · Zbl 0228.20015
[5] F. I. Mautner, Spherical functions over \?-adic fields. I, Amer. J. Math. 80 (1958), 441 – 457. · Zbl 0092.12501
[6] Ichirô Satake, Theory of spherical functions on reductive algebraic groups over \?-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5 – 69. · Zbl 0122.28501
[7] Tsuneo Tamagawa, On Selberg’s trace formula, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 363 – 386. · Zbl 0118.11405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.