×

zbMATH — the first resource for mathematics

On the use of singular functions with finite element approximations. (English) Zbl 0273.35004

MSC:
35A35 Theoretical approximation in context of PDEs
41A15 Spline approximation
35J25 Boundary value problems for second-order elliptic equations
65N06 Finite difference methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birkhoff, G., Numerical solution of elliptic equations, SIAM rev., (1971) · Zbl 0208.19202
[2] Birkhoff, G., Piecewise bicubic interpolation and approximation in polygons, () · Zbl 0279.41003
[3] \scG. Birkhoff, Angular singularities of elliptic problems, J. Approximation Theory, to appear. · Zbl 0252.35003
[4] Birkhoff, G.; Fix, G.J., Accurate eigenvalue computations for elliptic problems, (), 111-151
[5] Birkhoff, G.; De Boor, C.; Swartz, B.; Wendroff, B., Rayleigh-Ritz approximation, SIAM J. numer. anal., 3, 188-203, (1966) · Zbl 0143.38002
[6] Birkhoff, G.; Schultz, M.H.; Varga, R.S., Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numer. math., 11, 232-256, (1968) · Zbl 0159.20904
[7] Curry, H.B.; Schoenberg, I.J., On the Pólya frequency function IV, J. analyse math., XVII, (1966) · Zbl 0146.08404
[8] \scC. De Boor and G. Fix, Spline approximation by quasiinterpolants, J. Approximation Theory, to appear. · Zbl 0279.41008
[9] \scD. K. Faddeev and V.N. Faddeeva, “Computational Methods of Linear Algebra”, W. H. Freeman and Company, San Francisco, CA. · Zbl 0451.65015
[10] Fix, G., Higher-order Rayleigh-Ritz approximations, J. math. mech., 18, 645-658, (1969) · Zbl 0234.65095
[11] Fox; Henrici, P.; Moler, C., Approximations and bounds for eigenvalues of elliptic operators, SIAM J. numer. anal., 4, 89-102, (1967) · Zbl 0148.39502
[12] Forsythe, G.; Wasow, W., Finite difference methods for partial differential equations, (1960), Wiley New York · Zbl 0099.11103
[13] ()
[14] Glasstone, S.; Edlund, M.E., Elements of nuclear reactor theory, (1952), van Nostrand Princeton, NJ
[15] \scP. D. Hilton and J. Hutchinson, Plastic intensity factor for cracked plates, Eng. J. Fracture Mech., to appear.
[16] Johnson, O.G., Error bounds for Sturm-Liouville eigenvalue approximations by several piecewise cubic Rayleigh-Ritz methods, SIAM J. numer. anal., 6, 317-333, (1969) · Zbl 0183.44602
[17] \scG. Strang and G. Fix, “An Analysis of the Finite Element Method,” book to be published by Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0356.65096
[18] Varga, R.S., Functional analysis, approximation theory, and numerical analysis, SIAM rev., (1971) · Zbl 0226.65064
[19] Wait, R.; Mitchell, A.R., Corner singularities in elliptic problems by finite element methods, J. computational phys., 8, 45-52, (1971) · Zbl 0224.65030
[20] Wakoff, G.I., Piecewise polynomial spaces and the Ritz-Galerkin method, ()
[21] Wilkinson, J.H.; Reinsch, C., Linear algebra, (1971), Springer Berlin/New York
[22] Lehman, S., Developments at an analytic corner of solutions of elliptic partial differential equations, J. math. mech., 8, 727-760, (1959) · Zbl 0094.29702
[23] \scG. Fix, “On Rayleigh-Ritz approximation of eigenvalues,” unpublished manuscript. · Zbl 0234.65095
[24] Gould, S.H., Variational methods for eigenvalue problems, (1966), Univ. of Toronto Press Toronto · Zbl 0156.12401
[25] Kellogg, B., On the Poisson equation with intersecting interfaces, () · Zbl 0307.35038
[26] Babuska, I., The finite element method with Lagrange multipliers, () · Zbl 0665.73060
[27] Bramble, J.H.; Schatz, A.H., On the numerical solution of elliptic boundary value problems by least-square approximation of the data, () · Zbl 0623.65118
[28] Kondrat’ev, V.A., Boundary problems for elliptic equations with conical or angular points, Trans. Moscow math. soc., 17, (1968) · Zbl 0194.13405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.