## Dual variational methods in critical point theory and applications.(English)Zbl 0273.49063

Consider the nonlinear elliptic partial differential equation
$L(u) \equiv -\sum_{i,j=1}^n (a_{ij}(x)u_{x_i})_{x_j} + c(x)u = p(x,u),\quad x\in\Omega,\ u = 0,\ x \in\partial\Omega, \tag{*}$
where $$\Omega\subset\mathbb R^n$$ is a smooth bounded domain. Formally, the critical points of the functional
$I(u) = \int_\Omega \left[ \frac12 \sum_{i,j=1}^n (a_{ij}(x)u_{x_i})_{x_j} + c(x)u^2 - P(x,u(x))\right] \,dx,$
where $$P(x,u)$$ is a primitive of $$p(x,u)$$, are solutions of (*). The authors construct dual variational methods to enable them to prove the existence and estimate the number of critical points possessed by a real continuously differentiable functional on a real Banach space, and then apply their results to various existence problems for equations of type (*). They also apply them to problems with linear term added, i.e.
$L(u) = a(x)u + p(x,u),\quad x\in\Omega;\ u=0,\ x \in\partial\Omega,$
as well as to nonlinear integral equations of the form
$v(x) = \int_\Omega g(x,y)q(y,v(y))\,dy.$
Reviewer: H. S. P. Grässer
Show Scanned Page ### MSC:

 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 35J20 Variational methods for second-order elliptic equations
Full Text:

### References:

  Ljusternik, L.A; Schnirelman, L.G, Methodes topologiques dans LES problèmes variationels, Actualites sci. ind 188, (1934), Paris  Krasnoselski, M.A, Topological methods in the theory of nonlinear integral equations, (1964), Macmillan New York  Schwartz, J.T, Generalizing the Lusternik-schnirelman theory of critical points, Commun. pure appl. math., 17, 307-315, (1964) · Zbl 0152.40801  Palais, R.S, Lusternik-schnirelman theory on Banach manifolds, Topology, 5, 115-132, (1966) · Zbl 0143.35203  Browder, F.E, Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of math., 82, 459-477, (1965) · Zbl 0136.12002  Amann, H, Lusternik-schnirelman theory and nonlinear eigenvalue problems, Math. ann., 199, 55-72, (1972)  Clark, D.C, A variant of the Lusternik-schnirelman theory, Indiana univ. math. J., 22, 65-74, (1972) · Zbl 0228.58006  Coffman, C.V, A minimum-maximum principle for a class of nonlinear integral equations, J. analyse math., 22, 391-419, (1969) · Zbl 0179.15601  Coffman, C.V, On a class of nonlinear elliptic boundary value problems, J. math. mech., 19, 351-356, (1970) · Zbl 0194.42103  Hempel, J.A, Superlinear variational boundary value problems and nonuniqueness, ()  Hempel, J.A, Multiple solutions for a class of nonlinear boundary value problems, Indiana univ. math. J., 20, 983-996, (1971) · Zbl 0225.35045  Ambrosetti, A, Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti accad. naz. lincei mem. cl. sci. fiz. mat. natur. ser. I, 52, 660-667, (1972) · Zbl 0249.35030  {\scA. Ambrosetti}, On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova, to appear. · Zbl 0273.35037  {\scP. H. Rabinowitz}, On pairs of positive solutions for nonlinear elliptic equations, Indiana Univ. Math. J., to appear. · Zbl 0264.35032  {\scP. H. Rabinowitz}, Variational methods for nonlinear elliptic eigenvalue problems, to appear, Indiana Univ. Math. J. · Zbl 0278.35040  Nehari, Z, On a class of nonlinear integral equations, Math. Z., 72, 175-183, (1959) · Zbl 0092.10903  {\scP. H. Rabinowitz}, Some aspects of nonlinear eigenvalue problems, Rocky Mountain Math. J., to appear. · Zbl 0255.47069  Palais, R.S; Smale, S, A generalized Morse theory, Bull. amer. math. soc., 70, 165-171, (1964) · Zbl 0119.09201  Rabinowitz, P.H, Nonlinear Sturm-Liouville problems for second order ordinary differential equations, Commun. pure appl. math., 23, 939-961, (1970) · Zbl 0206.09706  {\scR. E. L. Turner}, Superlinear Sturm-Liouville problems, to appear, J. Diff. Eq. · Zbl 0272.34031  Agmon, S, The Lp approach to the Dirichlet problem, Ann. scuolu. norm. sup. Pisa, 13, 405-448, (1959) · Zbl 0093.10601  Berger, M.S; Berger, M.S, A Sturm-Liouville theorem for nonlinear elliptic partial differential equations, Ann. scuola. norm. sup. Pisa, Corrections, 22, 351-354, (1968) · Zbl 0155.16902  Pohozaev, S.I, On the eigenfunctions of quasilinear elliptic problems, Math. USSR-sb., 11, 171-188, (1970) · Zbl 0217.13203  Amann, H, Existence theorems for equations of Hammerstein type, Appl. anal., 1, 385-397, (1972) · Zbl 0244.47047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.