zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dual variational methods in critical point theory and applications. (English) Zbl 0273.49063

58E05Abstract critical point theory
35J20Second order elliptic equations, variational methods
Full Text: DOI
[1] Ljusternik, L. A.; Schnirelman, L. G.: Methodes topologiques dans LES problèmes variationels. Actualites sci. Ind 188 (1934)
[2] Krasnoselski, M. A.: Topological methods in the theory of nonlinear integral equations. (1964)
[3] Schwartz, J. T.: Generalizing the Lusternik-schnirelman theory of critical points. Commun. pure appl. Math. 17, 307-315 (1964) · Zbl 0152.40801
[4] Palais, R. S.: Lusternik-schnirelman theory on Banach manifolds. Topology 5, 115-132 (1966) · Zbl 0143.35203
[5] Browder, F. E.: Infinite dimensional manifolds and nonlinear eigenvalue problems. Ann. of math. 82, 459-477 (1965) · Zbl 0136.12002
[6] Amann, H.: Lusternik-schnirelman theory and nonlinear eigenvalue problems. Math. ann. 199, 55-72 (1972) · Zbl 0233.47049
[7] Clark, D. C.: A variant of the Lusternik-schnirelman theory. Indiana univ. Math. J. 22, 65-74 (1972) · Zbl 0228.58006
[8] Coffman, C. V.: A minimum-maximum principle for a class of nonlinear integral equations. J. analyse math. 22, 391-419 (1969) · Zbl 0179.15601
[9] Coffman, C. V.: On a class of nonlinear elliptic boundary value problems. J. math. Mech. 19, 351-356 (1970) · Zbl 0194.42103
[10] Hempel, J. A.: Superlinear variational boundary value problems and nonuniqueness. Thesis (1970)
[11] Hempel, J. A.: Multiple solutions for a class of nonlinear boundary value problems. Indiana univ. Math. J. 20, 983-996 (1971) · Zbl 0225.35045
[12] Ambrosetti, A.: Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro. Atti accad. Naz. lincei mem. Cl. sci. Fiz. mat. Natur. ser. I 52, 660-667 (1972) · Zbl 0249.35030
[13] A. Ambrosetti, On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova, to appear. · Zbl 0273.35037
[14] P. H. Rabinowitz, On pairs of positive solutions for nonlinear elliptic equations, Indiana Univ. Math. J., to appear. · Zbl 0264.35032
[15] P. H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, to appear, Indiana Univ. Math. J. · Zbl 0278.35040
[16] Nehari, Z.: On a class of nonlinear integral equations. Math. Z. 72, 175-183 (1959) · Zbl 0092.10903
[17] P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain Math. J., to appear. · Zbl 0255.47069
[18] Palais, R. S.; Smale, S.: A generalized Morse theory. Bull. amer. Math. soc. 70, 165-171 (1964) · Zbl 0119.09201
[19] Rabinowitz, P. H.: Nonlinear Sturm-Liouville problems for second order ordinary differential equations. Commun. pure appl. Math. 23, 939-961 (1970) · Zbl 0206.09706
[20] R. E. L. Turner, Superlinear Sturm-Liouville problems, to appear, J. Diff. Eq. · Zbl 0272.34031
[21] Agmon, S.: The lp approach to the Dirichlet problem. Ann. scuolu. Norm. sup. Pisa 13, 405-448 (1959) · Zbl 0093.10601
[22] Berger, M. S.: Corrections. 22, 351-354 (1968)
[23] Pohozaev, S. I.: On the eigenfunctions of quasilinear elliptic problems. Math. USSR-sb. 11, 171-188 (1970)
[24] Amann, H.: Existence theorems for equations of Hammerstein type. Appl. anal. 1, 385-397 (1972) · Zbl 0244.47047