Manifolds without conjugate points. (English) Zbl 0273.53037


53C20 Global Riemannian geometry, including pinching
Full Text: DOI EuDML


[1] Anosov, D. V.: Geodesic flows on closed riemannian manifolds with negative curvature. Proc. Steklov Inst., Amer. Math. Soc., Providence, Rhode Island, 90 (1967) · Zbl 0176.19101
[2] Avez, A.: Variétés riemanniennes sans points focaux. C.R. Acad. Sci. Paris Ser. A?B270, A188-A191 (1970) · Zbl 0188.26402
[3] Bishop, R. L., Crittenden, R. J.: Geometry of manifolds. New York: Academic Press 1964 · Zbl 0132.16003
[4] Eberlein, P.: When is a geodesic flow Anosov?, I. Preprint. To appear in J. of Diff. Geom. · Zbl 0285.58008
[5] Eberlein, P.: When is a geodesic flow Anosov?, II. Preprint · Zbl 0295.58009
[6] Frankel, T.: On theorems of Hurwitz and Bochner. J. Math. Mech.15, 373-377 (1966) · Zbl 0139.39103
[7] Green, L. W.: Surfaces without conjugate points. Trans. Amer. Math. Soc.76, 529-546 (1954) · Zbl 0058.37303
[8] Green, L. W.: Geodesic instability. Proc. Amer. Math. Soc.7, 438-448 (1956) · Zbl 0075.17202
[9] Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. Lecture Notes in Mathematics 55. Berlin-Heidelberg-New York: Springer 1968 · Zbl 0155.30701
[10] Gromoll, D., Meyer, W.: On complete open manifolds of positive curvature. Ann. of Math.90, 75-90 (1969) · Zbl 0191.19904
[11] Gromoll, D., Wolf, W.: Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of non-positive curvature. Bull. Amer. Math. Soc.77, 545-552 (1971) · Zbl 0237.53037
[12] Hermann, R.: Focal points of closed submanifolds of Riemannian spaces. Proc. Ned. Akad. Wet.66, 613-628 (1963) · Zbl 0117.38702
[13] Hermann, R.: Differential geometry and the calculus of variations. New York: Academic Press 1968 · Zbl 0219.49023
[14] Hopf, E.: Closed surfaces without conjugate points. Proc. Acad. Sci.34, 47-51 (1948) · Zbl 0030.07901
[15] Lawson, H. B., Jr., Yau, S. T.: On compact manifolds of non-positive curvature. Preprint
[16] MAA studies in mathematics: Studies in global geometry and analysis. Englewood Cliffs, N.J.: Prentice Hall 1967 · Zbl 0175.48102
[17] Samelson, H.: On curvature and characteristic of homogeneous spaces. Mich. Math. J.5, 13-18 (1958) · Zbl 0084.37407
[18] Synge, J. L.: The first and second variations of the length integral in Riemannian space. Proc. London Math. Soc.25 (2), 247-264 (1926) · JFM 52.0738.04
[19] Wolf, J. A.: Curvature in nilpotent Lie groups. Proc. Amer. Math. Soc.15, 271-274 (1964) · Zbl 0134.17905
[20] Wolf, J. A.: Homogeneity and bounded isometries in manifolds of negative curvature. Illinois J. of Math.8, 14-18 (1964) · Zbl 0126.17702
[21] Yau, S. T.: On the fundamental group of compact manifolds of non-positive curvature. Ann. of Math.93, 579-585 (1971) · Zbl 0219.53040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.