×

The free Markoff field. (English) Zbl 0273.60079


MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI

References:

[1] Cook, J. M., The mathematics of second quantization, Trans. Amer. Math. Soc., 74, 222-245 (1953) · Zbl 0052.22701
[2] Doob, J. L., The Brownian movement and stochastic equations, Ann. of Math., 43, 351-369 (1942) · Zbl 0063.01145
[3] Fock, V., Konfigurationsraum und Zweite Quantelung, Z. Physik., 75, 622-647 (1932) · Zbl 0004.28003
[4] Glimm, J., Boson fields with nonlinear selfinteraction in two dimensions, Commun. Math. Phys., 8, 12-25 (1968) · Zbl 0173.29903
[5] Glimm, J.; Jaffe, A., A \(λ(ϑ^4)_2\) quantum field theory without cutoffs, I, Phys. Rev., 176, 1945-1951 (1968) · Zbl 0177.28203
[6] Glimm, J.; Jaffe, A., The \(λ(ϑ^4)_2\) quantum field theory without cutoffs II. The field operators and the approximate vacuum, Ann. of Math., 91, 362-401 (1970) · Zbl 0191.27005
[7] Glimm, J.; Jaffe, A., The \(λ(ϑ^4)_2\) quantum field theory without cutoffs III. The physical vacuum, Acta Math., 125, 203-267 (1970) · Zbl 0191.27005
[8] J. Glimm and A. Jaffe\(λϑ^4_2\); J. Glimm and A. Jaffe\(λϑ^4_2\) · Zbl 0191.27005
[9] Gross, L., Existence and uniqueness of physical ground states, J. Funct. Anal., 10, 52-109 (1972) · Zbl 0237.47012
[10] F. GuerraPrinceton University preprint; F. GuerraPrinceton University preprint
[11] F. Guerra, L. Rosen, and B. Simon\(Pϑ_2\)Commun. Math. Phys.; F. Guerra, L. Rosen, and B. Simon\(Pϑ_2\)Commun. Math. Phys.
[12] Halmos, P. R., Normal dilations and extensions of operators, Summa Brasil. Math., 2, 125-134 (1950) · Zbl 0041.23201
[13] Hille, E., A class of reciprocal functions, Ann. of Math., 27, 427-464 (1926) · JFM 52.0400.02
[14] Nelson, E., Regular probability measures on function space, Ann. of Math., 69, 630-643 (1959) · Zbl 0087.13102
[15] Nelson, E., A quartic interaction in two dimensions, (Goodman, R.; Segal, I., Mathematical Theory of Elementary Particles (1966), Massachusetts Institute of Technology Press: Massachusetts Institute of Technology Press Cambridge, MA)
[16] Nelson, E., Quantum fields and Markoff fields, (Amer. Math. Soc. Summer Institute on Partial Differential Equations. Amer. Math. Soc. Summer Institute on Partial Differential Equations, Berkeley (1971)) · Zbl 0279.60096
[17] Nelson, E., Time-ordered operator products of sharp-time quadratic forms, J. Functional Analysis, 11, 211-219 (1972) · Zbl 0239.47012
[18] Nelson, E., Construction of quantum fields from Markoff fields, J. Functional Analysis, 12, 97-112 (1973) · Zbl 0252.60053
[19] Riesz, F.; Sz.-Nagy, B., Functional Analysis [Appendix: Extensions of Linear Transformations in Hilbert Space which Extend beyond this Space] (1960), Ungar: Ungar New York, (transl. by L. F. Boron)
[20] Segal, I. E., Tensor algebras over Hilbert spaces, Trans. Amer. Math. Soc., 81, 106-134 (1956) · Zbl 0070.34003
[21] Segal, I. E., Construction of nonlinear local quantum processes, I, Ann. Math., 92, 462-481 (1970) · Zbl 0213.40904
[22] Simon, B.; Hoegh-Krohn, R., Hypercontractive semigroups and two dimensional self-coupled Bose fields, J. Funct. Anal., 9, 121-180 (1972) · Zbl 0241.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.