×

zbMATH — the first resource for mathematics

Varieties of lattice-ordered groups. (English) Zbl 0274.20034

MSC:
20E10 Quasivarieties and varieties of groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Cohn, P.MM.: Universal Algebra; New York-Evanston-London: Harper & Row 1965 · Zbl 0141.01002
[2] Conrad, P.: Lattice-ordered groups; New Orleans: Tulane University (1970) · Zbl 0213.31502
[3] Fuchs, L.: Partially Ordered Algebraic Systems; Oxford-New York-Toronto: Pergamon Press 1963 · Zbl 0137.02001
[4] Gratzer, G.: Universal Algebra: Princeton: Van Nostrand L (1968)
[5] Neumann, H.: Varieties of Groups; Berlin-Heidelberg-New York: Springer 1967 · Zbl 0149.26704
[6] Martinez, J.: Free products in varieties of lattice-ordered groups; Czechosl. math. J.22 (97), 535-553 (1972) · Zbl 0247.06022
[7] Martinez, J.: Archimedean-like classes of lattice-ordered groups. Trans. Amer math. Soc.186, 33-49 (1973) · Zbl 0298.06022 · doi:10.1090/S0002-9947-1973-0332614-X
[8] Scrimger, E. B.: A large class of small varieties of lattice-ordered groups; Preprint · Zbl 0312.06010
[9] Weinberg, E. C.: Free lattice-ordered abelian groups; Math. Ann.151, 187-199 (1963) · Zbl 0114.25801
[10] Wolfenstein, S.: Valuers normales dans un groupe réticulé; Atti Accad. naz. Lincei, Mem., Cl. Sci. fis. mat. natur. VIII Ser. Sez. I.44, 337-342 (1968) · Zbl 0174.06003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.