Axioms for Euclidean Green’s functions. (English) Zbl 0274.46047


46L05 General theory of \(C^*\)-algebras
46F10 Operations with distributions and generalized functions
81T08 Constructive quantum field theory
Full Text: DOI


[1] Borchers, H. J.: On structure of the algebra of field operators. Nuovo Cimento24, 214 (1962). · Zbl 0129.42205
[2] Dimock, J., Glimm, J.: Measures on the Schwartz distribution space and applications to quantum field theory (to appear). · Zbl 0313.28015
[3] Dyson, F. J.: TheS matrix in quantum electrodynamics. Phys. Rev.75, 1736 (1949). · Zbl 0033.14201
[4] Feldman, J.: A relativistic Feynman-Kac formula. Harvard preprint (1972).
[5] Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. 2. New York: Academic Press 1964.
[6] Glimm, J., Jaffe, A.: Quantum field theory models, in the 1970 Les Houches lectures. Dewitt, C., Stora, R. (Ed.). New York: Gordon and Breach Science Publishers 1971. · Zbl 0221.47022
[7] Glimm, J., Jaffe, A.: Positivity of the 3 4 Hamiltonian, preprint 1972. · Zbl 0221.47022
[8] Glimm, J., Jaffe, A.: The {\(\lambda\)} 2 4 quantum field theory without cutoffs IV. J. Math. Phys.13, 1568 (1972). · Zbl 0191.27005
[9] Glimm, J., Spencer, T.: The Wightman axioms and the mass gap for theP ()2 quantum field theory, preprint (1972).
[10] Hall, D., Wightman, A. S.: A theorem on invariant analytic functions with applications to relativistic quantum field theory. Mat.-Fys. Medd. Danske Vid. Selsk.31, No. 5 (1951). · Zbl 0078.44302
[11] Hörmander, L.: On the division of distributions by polynomials. Arkiv Mat.3, 555 (1958). · Zbl 0131.11903
[12] Jost, R.: The general theory of quantized fields. Amer. Math. Soc. Publ., Providence R. I., 1965. · Zbl 0127.19105
[13] Jost, R.: Eine Bemerkung zum CTP-Theorem. Helv. Phys. Acta30, 409 (1957). · Zbl 0085.43305
[14] Jost, R.: Das Pauli-Prinzip und die Lorentz-Gruppe. In: Theoretical physics in the twentieth century, ed. Fierz, M., Weisskopf, V. New York: Interscience Publ. 1960.
[15] Nelson, E.: Quantum fields and Markoff fields. Amer. Math. Soc. Summer Institute on PDE, held at Berkeley, 1971. · Zbl 0279.60096
[16] Nelson, E.: Construction of quantum fields from Markoff fields, preprint (1972). · Zbl 0252.60053
[17] Nelson, E.: The free Markoff field, preprint (1972). · Zbl 0273.60079
[18] Osterwalder, K., Schrader, R.: Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermion models, Helv. Phys. Acta, to appear, and Phys. Rev. Lett.29, 1423 (1972).
[19] Robertson, A. P., Robertson, W. J.: Topological vector spaces. London and New York: Cambridge Univ. Press 1964. · Zbl 0123.30202
[20] Ruelle, D.: Connection between Wightman functions and Green functions inP-space. Nuovo Cimento19, 356 (1961). · Zbl 0097.43003
[21] Schwinger, J.: On the Euclidean structure of relativistic field theory. Proc. Natl. Acad. Sci. U.S.44, 956 (1958). · Zbl 0082.42502
[22] Schwinger, J.: Euclidean quantum electrodynamics. Phys. Rev.115, 721 (1959). · Zbl 0087.23202
[23] Streater, R. F., Wightman, A. S.: PCT, spin and statistics and all that. New York: Benjamin 1964. · Zbl 0135.44305
[24] Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys.7, 510 (1966).
[25] Symanzik, K.: Euclidean quantum field theory. In: Proceedings of the International School of Physics ”ENRICO FERMI”, Varenna Course XLV, ed. Jost, R. New York: Academic Press 1969.
[26] Vladimirov, V. S.: Methods of the theory of functions of several complex variables. Cambridge and London: MIT Press 1966.
[27] Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63 (1934). · Zbl 0008.24902
[28] Wightman, A. S.: Quantum field theory and analytic functions of several complex variables. J. Indian Math. Soc.24, 625 (1960). · Zbl 0115.44802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.