×

Topological entropy for noncompact sets. (English) Zbl 0274.54030


MSC:

54H20 Topological dynamics (MSC2010)
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309 – 319. · Zbl 0127.13102
[2] Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. · Zbl 0195.06104
[3] Patrick Billingsley, Hausdorff dimension in probability theory, Illinois J. Math. 4 (1960), 187 – 209. · Zbl 0098.10602
[4] Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. · Zbl 0184.43301
[5] Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401 – 414. · Zbl 0212.29201
[6] Rufus Bowen, Markov partitions for Axiom \? diffeomorphisms, Amer. J. Math. 92 (1970), 725 – 747. · Zbl 0208.25901
[7] C. M. Colebrook, The Hausdorff dimension of certain sets of nonnormal numbers, Michigan Math. J. 17 (1970), 103 – 116. · Zbl 0194.35802
[8] E. I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19 – 22 (Russian). · Zbl 0196.26401
[9] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31 – 36. · Zbl 0031.20801
[10] Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1 – 49. · Zbl 0146.28502
[11] Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339 – 348 (1970). , https://doi.org/10.1016/0001-8708(70)90008-3 Donald Ornstein, Factors of Bernoulli shifts are Bernoulli shifts, Advances in Math. 5 (1970), 349 – 364 (1970). , https://doi.org/10.1016/0001-8708(70)90009-5 N. A. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1970), 365 – 394 (1970). · Zbl 0203.05801
[12] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176 – 180. · Zbl 0219.54037
[13] L. Wayne Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679 – 688. · Zbl 0186.09804
[14] William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0175.34001
[15] D. Ruelle, Statistical mechanics on a compact set with \( {Z^\nu }\) action satisfying expansiveness and specification (preprint). · Zbl 0255.28015
[16] У-диффеоморпхисмс, Функционал. Анал. и Прилоžен 2 (1968), но. 1, 64 – 89 (Руссиан).
[17] B. Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc. 76 (1970), 1266 – 1269. · Zbl 0218.28011
[18] K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. · Zbl 0153.19101
[19] Robert Ash, Information theory, Interscience Tracts in Pure and Applied Mathematics, No. 19, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1965. · Zbl 0141.34904
[20] Karl Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974), 285 – 299. · Zbl 0286.28010
[21] Benjamin Weiss, The isomorphism problem in ergodic theory, Bull. Amer. Math. Soc. 78 (1972), 668 – 684. · Zbl 0255.28014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.