Rao, M. M. Projective limits of probability spaces. (English) Zbl 0274.60006 J. multivariate Analysis 1, 28-57 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 15 Documents MSC: 28A35 Measures and integrals in product spaces 60B05 Probability measures on topological spaces PDFBibTeX XMLCite \textit{M. M. Rao}, J. Multivariate Anal. 1, 28--57 (1971; Zbl 0274.60006) Full Text: DOI References: [1] Bochner, S., (Harmonic Analysis and the Theory of Probability (1955), Univ. California Press: Univ. California Press Los Angeles) · Zbl 0068.11702 [2] Bourbaki, N., (Éléments de Mathématique (1969), Hermann: Hermann Paris), Chap. IX · Zbl 0205.06001 [3] Choksi, J. R., Inverse limits of measure spaces, (Proc. London Math. Soc., 8 (1958)), 321-342 · Zbl 0085.04003 [4] Chow, Y. S., Martingales in a σ-finite measure space indexed by directed sets, Trans. Amer. Math. Soc., 97, 254-285 (1960) · Zbl 0102.13402 [5] Dinculeanu, N., Projective limit of measure spaces, Rev. Roumaine Math. Pures Appl., 14, 963-966 (1969) · Zbl 0187.31102 [6] Dinculeanu, N.; Foias, C., Algebraic models for measures, Illinois J. Math., 12, 340-351 (1968) · Zbl 0157.24304 [7] Dunford, N.; Schwartz, J. T., (Linear Operators, Part I: General Theory. (1968), Interscience-Wiley: Interscience-Wiley New York) [8] Halperin, F.; Sion, M., A representation theorem for measures on infinite dimensional spaces, Pacific J. Math., 30, 47-58 (1969) · Zbl 0181.41602 [9] Ionescu Tulcea, A.; Ionescu Tulcea, C., (Topics in the Theory of Lifting (1969), Springer-Verlag: Springer-Verlag New York), 1969 · Zbl 0179.46303 [10] Jerison, M.; Rabson, G., Convergence theorems obtained from induced homomorphisms of a group algebra, Ann. of Math., 63, 2, 176-190 (1956) · Zbl 0070.11601 [11] Kirk, R. B., Kolmogorov type consistency theorems for products of locally compact, B-compact spaces, (Proc. Acad. Sci. Amsterdam Ser. A, 73 (1970)), 77-81 · Zbl 0193.00803 [12] Kolmogoroff, A. N., (Grundbegriffe der Wahrscheinlichkeitsrechnung (1933), Springer-Verlag: Springer-Verlag Berlin) · JFM 59.1152.03 [13] Krickeberg, K.; Pauc, C., Martingales et dérivation, Bull. Soc. Math. France, 91, 455-543 (1963) · Zbl 0146.37601 [14] Mallory, D. J., Limits of inverse systems of measure spaces, (Thesis (1968), Univ. Br. Columbia) · Zbl 0205.07101 [15] Métivier, M., Limites projectives de mesures. Martingales. Applications, Ann. Mat. Pura Appl., 63, 4, 225-352 (1963) · Zbl 0137.35401 [16] Neveu, J., (Mathematical Foundations of the Calculus of Probabilities (1965), Holden-Day: Holden-Day San Francisco), (translation) · Zbl 0137.11301 [17] Prokhorov, Yu. V., Convergence of random processes and limit theorems in probability theory, Theor. Probability Appl., 1, 156-214 (1956) · Zbl 0075.29001 [18] Rao, M. M.Stochastic Processes.; Rao, M. M.Stochastic Processes. [19] Scheffer, C. L., Limit of directed projective systems of probability spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13, 60-80 (1969) · Zbl 0176.47501 [20] Schwartz, L.Radon Measures on Arbitrary Topological Spaces; Schwartz, L.Radon Measures on Arbitrary Topological Spaces [21] Segal, I. E., Abstract probability spaces and a theorem of Kolmogoroff, Amer. J. Math., 76, 721-732 (1954) · Zbl 0056.12301 [22] Sion, M., (Methods of Real Analysis. (1969), Holt, Rinehart, & Winston: Holt, Rinehart, & Winston New York) · Zbl 0181.05602 [23] Uhl, J. J., Orlicz spaces of finitely additive set functions, Studia Math., 29, 19-58 (1967) · Zbl 0155.18303 [24] Pfanzagl, J.; Pierlo, W., Compact Systems of Sets, (Lecture Notes in Math., Vol. 16 (1966), Springer: Springer Berlin), 46 · Zbl 0161.36604 [25] Mallory, D. J. and Sion, M.; Mallory, D. J. and Sion, M. [26] Schreiber, B. M., Sun, T.-C. and Bharucha-Reid, A. T.; Schreiber, B. M., Sun, T.-C. and Bharucha-Reid, A. T. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.