×

zbMATH — the first resource for mathematics

A modified convace simplex algorithm for geometric programming. (English) Zbl 0274.90050

MSC:
90C25 Convex programming
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Duffin, R. J., Peterson, E. L., andZener, C.,Geometric Programming– Theory and Applications, John Wiley and Sons, New York, New York, 1967. · Zbl 0171.17601
[2] Duffin, R. J., andPeterson, E. L.,Duality Theory for Geometric Programming, SIAM Journal on Applied Mathematics, Vol. 14, pp. 1307–1349, 1966. · Zbl 0203.21902 · doi:10.1137/0114105
[3] Rijckaert, M. J.,Engineering Applications of Geometric Programming, Optimization Theory in Technological Design, Edited by M. Avriel, M. Rijckaert, and D. Wilde, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.
[4] Duffin, R. J., andPeterson, E. L.,Geometric Programming with Signomials, Carnegie-Mellon University, Mathematics Department, Report No. 70-38, 1970. · Zbl 0238.90069
[5] Passy, U., andWilde, D. J.,Generalized Polynomial Optimization, SIAM Journal on Applied Mathematics, Vol. 15, pp. 1344–1356, 1967. · Zbl 0171.18002 · doi:10.1137/0115117
[6] Avriel, M., andWilliams, A. C.,Complementary Geometric Programming, SIAM Journal on Applied Mathematics, Vol. 19, pp. 125–141, 1970. · Zbl 0319.90035 · doi:10.1137/0119011
[7] Duffin, R. J., andPeterson, E. L.,Reversed Geometric Programs Treated by Harmonic Means, Carnegie-Mellon University, Mathematics Department, Report No. 71-19, 1971. · Zbl 0246.90044
[8] Zangwill, W. I.,The Convex Simplex Method, Management Science, Vol. 14, No. 3, 1967. · Zbl 0153.49002
[9] Zangwill, W. I.,Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. · Zbl 0195.20804
[10] Passy, U., andWilde, D. J.,A Geometric Programming Algorithm for Solving Chemical Equilibrium Problems, SIAM Journal on Applied Mathematics, Vol. 16, pp. 363–373, 1968. · doi:10.1137/0116030
[11] Beck, P. A., andEcker, J. G.,Some Computational Experience with a Modified Concave Simplex Algorithm for Geometric Programming, Rensselaer Polytechnic Institute, Operations Research and Statistics Research, Paper No. 73-P1, 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.