zbMATH — the first resource for mathematics

Algorithm for solution of equations PA+A\(^T\)P=-Q and M\(^T\)PM-P=-Q resulting in Lyapunov stability analysis of linear systems. (English) Zbl 0274.93040
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C05 Linear systems in control theory
65H10 Numerical computation of solutions to systems of equations
Full Text: EuDML
[1] Katsuhiko Ogata: State Space Analysis of Control Systems. Prentice Hall, London 1967 · Zbl 0869.93002
[2] Kotek Z., Štecha Jan: Teorie optimálního řízení. (Theory of Optimal Control). Lecture Notes. Praha 1971.
[3] Kleinmann D. L.: On an Iterative Technique for Riccati Equation Computations. Trans. IEEE on Aut. Control AC-13 (Feb. 1968), 1, 114-115.
[4] Chen C. F., Shieh L. S.: A Note on Expanding \(PA + A^{T} P = - Q\). Trans IEEE on Aut. Control AC-13 (Feb. 1968), 1, 122-124.
[5] Sarma I. G., Pai M. A.: A Note on the Lyapunov Matrix Equation for Linear Discrete System. Trans. IEEE on Aut. Control AC-13 (Feb. 1968), 1, 119-121.
[6] Bellmann R.: Introduction to Matrix Analysis. McGraw-Hill, New York 1960.
[7] Dorato P., Lewis A. H.: Optimal Linear Regulators. The Discrete Time Case. Trans. IEEE on Aut. Control AC-16 (Dec. 1971), 6, 613-621.
[8] Fink M., Štecha J.: Linear Optimal Control System with Incomplete Information about State of System. Kybernetika 7 (1971), 6, 467-491. · Zbl 0266.49020 · eudml:28835
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.