zbMATH — the first resource for mathematics

Radikale von separablen Algebren über Ringen. (German) Zbl 0275.16008

16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16Nxx Radicals and radical properties of associative rings
17C99 Jordan algebras (algebras, triples and pairs)
17D05 Alternative rings
Full Text: DOI EuDML
[1] Behrens, E. A.: Nichtassoziative Ringe. Math. Ann.127, 441-452 (1954) · Zbl 0059.02802
[2] Behrens, E. A.: Zur additiven Idealtheorie in nichtassoziativen Ringen. Math. Z.64, 169-182 (1956) · Zbl 0075.24801
[3] Brown, B.: An Extension of the Jacobson Radical. Proc. Amer. math. Soc.2, 114-117 (1951) · Zbl 0042.26202
[4] De Meyer, F., Ingraham, E.: Separable Algebras over commutative Rings. Lecture Notes in Mathematics 181, Berlin-Heidelberg-New York: Springer 1971 · Zbl 0215.36602
[5] Hirato, K., Sugano, K.: On semisimple extensions and separable extensions over non-commutative rings. J. math. Soc. Japan18, 360-373 (1966) · Zbl 0178.36802
[6] Kleinfeld, E.: Primitive alternative rings and semisimplicity. Amer. J. Math.77, 725-730 (1955) · Zbl 0066.02302
[7] Müller, G. N.: Nicht assoziative separable Algebren über Ringen. Abh. math. Sem. Univ. Hamburg40, 115-131 (1974) · Zbl 0448.17003
[8] Smiley, M. F.: Application of a radical of Brown and McCoy to non-associative rings. Amer. J. Math.72, 93-100 (1950) · Zbl 0035.01802
[9] Thedy, A.: On rings with completely alternative commutators. Amer. J. Math.93, 42-51 (1971) · Zbl 0223.17009
[10] Thedy, A.: On rings with commutators in the nuclei. Math. Z.119, 213-218 (1971) · Zbl 0205.33302
[11] Wisbauer, R.: Homogene Polynomgesetze auf nichtassoziativen Algebren über Ringen. Erscheint in J. reine angew. Math. · Zbl 0315.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.