×

zbMATH — the first resource for mathematics

Bifurcation, perturbation of simple eigenvalues, and linearized stability. (English) Zbl 0275.47044

MSC:
47J05 Equations involving nonlinear operators (general)
35J60 Nonlinear elliptic equations
47H99 Nonlinear operators and their properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S., A. Douglis, & L. Niremberg, Estimates near the boundary for solutions of partial elliptic differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12, 623–727 (1959) · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] Amann, H., Existence of multiple solutions for nonlinear elliptic boundary value problems. Indiana Univ. Math. J. (to appear) · Zbl 0222.35023
[3] Amann, H., On the existence of positive solutions of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21, 125–146 (1971) · Zbl 0219.35037 · doi:10.1512/iumj.1972.21.21012
[4] Anselone, P. M., & R. H. Moore, An extension of the Newton-Kantorovic method for solving nonlinear equations. J. Math. Anal. Appl. 13, 476–501 (1966) · Zbl 0144.15802 · doi:10.1016/0022-247X(66)90043-6
[5] Aris, R., On stability criteria of chemical reaction engineering. Chem. Engrg. Sci. 24, 149–169 (1969) · doi:10.1016/0009-2509(69)80017-5
[6] Busse, F., The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625–649 (1967) · Zbl 0159.28202 · doi:10.1017/S0022112067001661
[7] Courant, R., & D. Hilbert, Methods of Mathematical Physics, Vol. I and II. New York: Interscience 1953, 1962 · Zbl 0051.28802
[8] Crandall, M. G., & P. H. Rabinowitz, Bifurcation from simple eigenvalues. J. Func. Analysis 8, 321–340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[9] Iudovich, V. I., Stability of convection flows. PMM 31, 294–303 (1967)
[10] Joseph, D. D., On the stability of the Boussinesq equations. Arch. Rational Mech. Anal. 20, 59–71 (1965) · Zbl 0136.23402 · doi:10.1007/BF00250190
[11] Kato, T., Perturbation Theory for Linear Operators. Berlin: Springer-Verlag 1966 · Zbl 0148.12601
[12] Keller, H. B., & D. S. Cohen, Some positone problems suggested by nonlinear heat generation. J. Math. Mech. 16, 1361–1376 (1967) · Zbl 0152.10401
[13] Kirchgässner, K., & P. Sorger, Stability analysis of branching solutions of the Navier-Stokes Equations. Proc. 12th Int. Congr. Appl. Mech., Edited by M. Hetenyi and W. G. Vincenti. New York: Springer-Verlag · Zbl 0191.25304
[14] Krein, M. G., & M. A. Rutman, Linear operators which leave a cone in Banach space invariant. Amer. Math. Soc. Transl. (1) 10, 199–325 (1950)
[15] Krishnamurti, R., Finite amplitude convection with changing mean temperature, Part I. Theory. J. Fluid Mech. 33, 445–455 (1968) · Zbl 0182.28803 · doi:10.1017/S0022112068001436
[16] Laetsch, T., The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20, 1–14 (1970) · Zbl 0215.14602 · doi:10.1512/iumj.1971.20.20001
[17] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems. J. Func. Anal, 7, 487–513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[18] Rabinowitz, P. H., Some aspects of nonlinear eigenvalue problems. Rocky Mt. J. Math. 3, 161–202 (1973) · Zbl 0255.47069 · doi:10.1216/RMJ-1973-3-2-161
[19] Sattinger, D. H., Stability of bifurcating solutions by Leray-Schauder degree. Arch. Rat. Mech. Anal. 43, 154–166 (1971) · Zbl 0232.34027 · doi:10.1007/BF00252776
[20] Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems. Ind. U. Math. J. 21, 979–1000 (1973) · Zbl 0223.35038 · doi:10.1512/iumj.1972.21.21079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.