Coterminal families and the strong Markov property. (English) Zbl 0275.60084


60J25 Continuous-time Markov processes on general state spaces
60J35 Transition functions, generators and resolvents
60J40 Right processes
60B05 Probability measures on topological spaces
Full Text: DOI


[1] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. · Zbl 0169.49204
[2] R. M. Blumenthal and R. K. Getoor, A theorem on stopping times, Ann. Math. Statist 35 (1964), 1348 – 1350. · Zbl 0133.10602
[3] K. L. Chung and J. L. Doob, Fields, optionality and measurability, Amer. J. Math. 87 (1965), 397 – 424. · Zbl 0192.24604
[4] J. L. Doob, Compactification of the discrete state spaces of a Markov process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 236 – 251. · Zbl 0164.19202
[5] Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. · Zbl 0138.10401
[6] -, Séminaire de probabilités. V, Springer-Verlag, Berlin, 1971, pp. 270-274.
[7] P. A. Meyer, R. T. Smythe, and J. B. Walsh, Birth and death of Markov processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 295 – 305. · Zbl 0255.60046
[8] A. O. Pittenger, Last exit times and the \?-matrices of Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971/72), 143 – 162. · Zbl 0212.20501
[9] A. O. Pittenger and C. T. Shih, Coterminal families and the strong Markov property, Bull. Amer. Math. Soc. 78 (1972), 439 – 443. · Zbl 0239.60070
[10] C. T. Shih, On extending potential theory to all strong Markov processes, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 303 – 315 (English, with French summary). · Zbl 0193.46201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.