×

zbMATH — the first resource for mathematics

Statistical decision theory for quantum systems. (English) Zbl 0275.62004

MSC:
62C10 Bayesian problems; characterization of Bayes procedures
62H99 Multivariate analysis
46G10 Vector-valued measures and integration
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wald, A, Contributions to the theory of statistical estimation and testing hypotheses, Ann. math. stat., 10, 299-326, (1939) · JFM 65.0585.03
[2] Lebedev, D.S; Levitin, L.B, (), 5-20, (In Russian)
[3] Bakut, P.A, Some problems of optical signals reception, Problems of information transmission, 2, No. 4, 39-55, (1966), (In Russian)
[4] Stratonovich, R.L, Rate of information transmission in some quantum communication channels, Problems of information transmission, 2, 45-57, (1966), (In Russian) · Zbl 0259.94002
[5] Helstrom, C.W, Detection theory and quantum mechanics, Information and control, 10, 254-291, (1967)
[6] Helstrom, C.W; Liu, J; Gordon, J, Quantum mechanical communication theory, (), 1578-1598
[7] von Neumann, J, ()
[8] Davies, E.B; Lewis, J.T, An operational approach to quantum probability, Commun. math. phys., 17, 239-260, (1970) · Zbl 0194.58304
[9] Holevo, A.S, The analogue of statistical decision theory in the noncommutative probability theory, (), 133-149, (In Russian) · Zbl 0289.62007
[10] Holevo, A.S, Information theory aspects of quantum measurement, Problems of information transmission, 9, 31-42, (1973), (In Russian) · Zbl 0317.94002
[11] Holevo, A.S; Holevo, A.S, Statistical problems in quantum physics, (), 104-119, Kyoto · Zbl 0265.62037
[12] Holevo, A.S, Optimal measurements of parameters in quantum signals, (), 147-149, (In Russian) · Zbl 0289.62007
[13] Holevo, A.S, On the noncommutatuve analogue of maximum likelihood, (), 317-320, (In Russian)
[14] Holevo, A.S, Statistical decisions in quantum theory, Theory prob. appl., 18, 442-444, (1973), (In Russian)
[15] Holevo, A.S, Some statistical problems for quantum fields, Theory prob. appl., 17, 360-365, (1972) · Zbl 0253.60089
[16] Gordon, J.P; Louisell, W.H, Simultaneous measurement of noncommuting observables, (), 833-840
[17] Helstrom, C.W, Quantum detection theory, Progress in optics, 10, 291-369, (1972)
[18] Achiezer, N.I; Glazman, I.M, (), (In Russian)
[19] Dixmier, J, LES algèbres d’opérateurs dans l’espace hilbertien, (1969), Gauthier-Villars Paris · Zbl 0175.43801
[20] Shatten, R, ()
[21] Gelfand, I.M; Vilenkin, N.Ya, (), (In Russian)
[22] Berberian, S.K, ()
[23] Segal, I.E, ()
[24] Mackey, G, ()
[25] Varadarajan, V.S, Probability in physics and a theorem on simultaneous observability, Comm. pure appl. math., 15, 169-217, (1962) · Zbl 0109.44705
[26] Takesaki, M, Conditional expectations in von Neumann algebras, J. functional analysis, 9, 306-321, (1972) · Zbl 0245.46089
[27] Umegaki, H, Conditional expextation in an operator algebra, Tohoku math. J., 6, 177-181, (1954) · Zbl 0058.10503
[28] Nakamura, M; Umegaki, H, On von Neumann’s theory of measurement in quantum statistics, Math. Japan, 7, 151-157, (1962) · Zbl 0113.09803
[29] Holevo, A.S, Towards the mathematical theory of quantum channels, Problems of information transmission, 8, 63-71, (1972), (In Russian)
[30] Chentsov, N.N, (), (In Russian)
[31] Yuen, H.P; Kennedy, R.S; Lax, M, On optimal quantum receivers for digital signal detection, (), 1770-1773
[32] Davies, E.B, On the repeated measurements of continuous observables in quantum mechanics, J. functional analysis, 6, 318-346, (1970) · Zbl 0198.59901
[33] Day, M.M, Operators in Banach spaces, Trans. amer. math. soc., 51, 583-608, (1942) · Zbl 0063.01055
[34] Bartle, R.G, A general bilinear vector integral, Studia math., 15, 337-352, (1956) · Zbl 0070.28102
[35] Dobrakov, I, On integration in Banach spaces, I, Czech. math. J., 20, 511-536, (1970) · Zbl 0215.20103
[36] Masani, P, Orthogonally scattered measures, Adv. math., 2, 61-117, (1968) · Zbl 0187.38705
[37] Mandrekar, V; Salehi, H, The square-integrability of operator-valued functions with respect to a nonnegative operator-valued measure and the Kolmogorov isomorphism theorem, Indiana univ. math. J., 20, 545-563, (1970) · Zbl 0252.46040
[38] Hille, E; Phillips, R.S, ()
[39] Alexandrov, A.D, Additive set functions in abstract spaces, Mat. sb., 13, 169-238, (1943) · Zbl 0060.13502
[40] Glauber, R.J, Coherent and incoherent states of the radiation field, Phys. rev., 131, 2766-2788, (1963) · Zbl 1371.81166
[41] Klauder, J.R; Sudarshan, E, ()
[42] Louisell, W.H, ()
[43] Manuceau, J; Verbeure, A, Quasi-free states of the CCR, Commun. math. phys., 9, 293-302, (1968) · Zbl 0167.55902
[44] Holevo, A.S, On quantum characteristic functions, Problems of information transmission, 6, 44-48, (1970), (In Russian)
[45] Holevo, A.S, Generalized free states of the C∗-algebra of CCR, Theoret. math. phys., 6, 3-20, (1971), (In Russian) · Zbl 0207.44303
[46] Holevo, A.S, On quasiequivalence of locally-normal states, Theoret. math. phys., 13, 184-199, (1972)
[47] Loupias, G; Miracle-Sole, S, C∗-algebras des systèmes canoniques, Commun. math. phys., 2, 31-48, (1966) · Zbl 0144.23401
[48] Pool, J.C.T, Mathematical aspects of Weyl correspondence, J. math. phys., 7, 66-76, (1966) · Zbl 0139.45903
[49] Personick, S.D, An image band interpretation of optical heterodyne noise, Bell syst. tech. J., 50, 213-216, (1971)
[50] Rocca, F, La P-représentation dans la formalisme de la convolution gauche, C. R. acad. sci. ser. A, 262, 547-549, (1966) · Zbl 0132.09704
[51] Bauer, H, Minimalstellen von funktionen und extremalpunkte, Arch. math., 9, 389-393, (1958) · Zbl 0082.32601
[52] Miller, M.M, Convergence of the sudarshan expansion for the diagonal coherent-state weight functional, J. math. phys., 9, 1270-1274, (1968) · Zbl 0159.59803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.