×

The equivalence of stack-counter acceptors and quasi-realtime stack- counter acceptors. (English) Zbl 0275.68017


MSC:

68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Book, R.; Ginsburg, S., Multi-stack-counter languages, Math. systems theory, 6, 37-48, (1972) · Zbl 0229.68030
[2] Evey, R., The theory and application of pushdown store machines, mathematical linguistics and automatic translation, Harvard university computation lab. rept. NSF-10, (May, 1963)
[3] Fischer, P., Turing machines with restricted memory access, Information and control, 9, 364-379, (1966) · Zbl 0145.24205
[4] Fischer, P.; Meyer, A.; Rosenberg, A., Counter machines and counter laguages, Math. systems theory, 2, 265-283, (1968) · Zbl 0165.32002
[5] Ginsburg, S., ()
[6] Ginsburg, S.; Greibach, S., Abstract families of languages, “studies in abstract families of languages, (), 1-32 · Zbl 0308.68058
[7] Ginsburg, S.; Greibach, S.; Harrison, M., One-way stack automata, J. assoc. comput. Mach., 14, 389-418, (1967) · Zbl 0171.14803
[8] Greibach, S., An infinite hierarchy of context-free languages, J. assoc. comput. math., 16, 91-106, (1969) · Zbl 0182.02002
[9] Greibach, S.; Ginsburg, S., Multitape AFA, J. assoc. comput. Mach., 19, 193-221, (1972) · Zbl 0241.68031
[10] Minsky, M., Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines, Ann. of math., 74, 437-455, (1961) · Zbl 0105.00802
[11] Rabin, M.; Scott, D., Finite automata and their decision problems, IBM J. res. develop., 3, 114-125, (1959) · Zbl 0158.25404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.