×

Intersection triangles and block intersection numbers of Steiner systems. (English) Zbl 0276.05018


MSC:

05B05 Combinatorial aspects of block designs
05B30 Other designs, configurations

References:

[1] Alltopp, W. O.: An infinite class of 5-designs. J. combinat. Theory, Ser. A12, 390-395 (1972) · Zbl 0239.05011 · doi:10.1016/0097-3165(72)90104-5
[2] Bruck, R., Ryser, H. J.: The non-existence of certain finite projective planes. Canadian J. Math.1, 88-93 (1949) · Zbl 0037.37502 · doi:10.4153/CJM-1949-009-2
[3] Dembowski, P.: Inversive planes of even order. Bull. Amer. math. Soc.69, 850-854 (1963) · Zbl 0128.15204 · doi:10.1090/S0002-9904-1963-11063-0
[4] Dembowski, P.: Möbiusebenen gerader Ordnung. Math. Ann.157, 179-205 (1964) · Zbl 0137.40103 · doi:10.1007/BF01362432
[5] Ganter, B.: A Catalogue of Steiner Systems. Darmstadt. Technische Hochschule Darmstadt (1972)
[6] Kantor, W. M.: Dimension and embedding theorems for geometric lattices (to appear) · Zbl 0302.06018
[7] Mendelsohn, N. S.: A theorem on Steiner systems. Canadian J. Math.22, 1010-1015 (1970) · doi:10.4153/CJM-1970-117-0
[8] Mendelsohn, N. S., Hung, S. H. Y.: On the Steiner systemsS(3, 4, 14) andS(4, 5, 15). Utilitas math.1, 5-95 (1972) · Zbl 0258.05017
[9] Noda, R.: Steiner systems which admit block transitive automorphism groups of small rank. Math. Z.125, 113-121 (1972) · Zbl 0218.05007 · doi:10.1007/BF01110922
[10] Wilson, R. M., Ray-Chaudhuri, D. K.: Generalization of Fisher’s inequality tot-designs. Notices Amer. math. Soc.18, 805 (1971)
[11] Witt, E.: Über Steinersche Systeme. Abh. math. Sem. Univ. Hamburg12, 265-275 (1938) · JFM 64.0937.02 · doi:10.1007/BF02948948
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.