zbMATH — the first resource for mathematics

On the conjugacy problem for knot groups. (English) Zbl 0276.20033

20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
03D40 Word problems, etc. in computability and recursion theory
20F05 Generators, relations, and presentations of groups
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
57M05 Fundamental group, presentations, free differential calculus
57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI EuDML
[1] Appel, K.I.: The Conjugacy Problem for Tame Alternating Knot Groups Is Solvable, Abstract 71 TA 227, Notices Amer. math Soc.18 (1971)
[2] Appel, K. I., Schupp, P. E.: The Conjugacy Problem for the Group of any Tame Alternating Knot Is Solvable, Proc. Amer. math Soc.33, 329-336 (1972) · Zbl 0243.20036 · doi:10.1090/S0002-9939-1972-0294460-X
[3] Chinn, W. G., Steenrod, N. G.: First Concepts of Topology, New York: Random House 1966 · Zbl 0201.55303
[4] Crowell, R. H., Fox, R. H.: Introduction to Knot Theory, Boston, Ginn and Co. 1962
[5] Little, C. N.: Non-alternative?Knots, Trans. roy. Soc. Edinburgh39, 771-778 (with 3 plates) (1900) · JFM 31.0481.02
[6] Liu, C. L.: Introduction to Combinatorial Mathematics, New York: McGraw Hill 1968
[7] Lyndon, R. C.: On Dehn’s Algorithm, Math. Ann.166, 208-226 (1968) · Zbl 0138.25702 · doi:10.1007/BF01361168
[8] Reidemeister, K.: Knotentheorie, Berlin: Springer 1932
[9] Schubert, H.: Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-ber. Heidelberger Akad. Wiss., math. naturw. Kl.3, 57-104 (1949) · Zbl 0031.28602
[10] Schupp, P. E.: On Dehn’s Algorithm and the Conjugacy Problem, Math. Ann.178, 119-130 (1968) · Zbl 0164.01901 · doi:10.1007/BF01350654
[11] Waldhausen, F.: The Word Problem in Fundamental Groups of Sufficiently Large Irreducible 3-manifolds, Ann. of Math., II. Ser.88, 272-280 (1968) · Zbl 0167.52103 · doi:10.2307/1970574
[12] Weinbaum, C. M.: The Word and Conjugacy Problems for the Knot Group of any Tame Prime Alternating Knot, Proc. Amer. math. Soc.22, 267-269 (1971) · Zbl 0228.55004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.