×

Über die Albanese-Abbildung einer fasthomogenen Kähler-Mannigfaltigkeit. (German) Zbl 0276.32022


MSC:

32M99 Complex spaces with a group of automorphisms
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. école norm. sup.73, 157-202 (1956) · Zbl 0073.37503
[2] Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801
[3] Borel, A.: Les bouts des espaces homogènes de groupes de Lie. Ann. of Math.58, 443-457 (1953) · Zbl 0053.13002
[4] Borel, A., Remmert, R.: Über kompakte homogene kählersche Mannigfaltigkeiten. Math. Ann.145, 429-439 (1962) · Zbl 0111.18001
[5] Chevalley, C.: Théorie des groupes de Lie. Groupes algébriques. Paris: Hermann 1968 · Zbl 0186.33104
[6] Frenkel, J.: Cohomologie non abélienne et éspaces fibrés. Bull. Soc. Math. Fr.85, 135-220 (1957) · Zbl 0082.37702
[7] Hardy, G.H., Wright, E.M.: Einführung in die Zahlentheorie. München: R. Oldenbourg 1958 · Zbl 0078.03101
[8] Lichnerowicz, A.: Variétés kählériennes à première classe de Chern positive ou nulle. C. R. Acad. Sc. Paris268, 876-880 (1969) · Zbl 0176.19202
[9] Oeljeklaus, E.: Fasthomogene Kählermannigfaltigkeiten mit verschwindender erster Bettizahl. manuscripta math.7, 175-183 (1972) · Zbl 0248.32021
[10] Potters, J.: On almost homogeneous compact complex analytic surfaces. Inventiones math.8, 244-266 (1969) · Zbl 0205.25102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.