zbMATH — the first resource for mathematics

Central multiplier theorems for compact Lie groups. (English) Zbl 0276.43009

43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
42A45 Multipliers in one variable harmonic analysis
42B05 Fourier series and coefficients in several variables
43A75 Harmonic analysis on specific compact groups
Full Text: DOI
[1] Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223 – 263 (French). · Zbl 0278.43015
[2] Ronald R. Coifman and Guido Weiss, Operators transferred by representations of an amenable group, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 369 – 372. · Zbl 0284.43002
[3] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. · Zbl 0224.43006
[4] Norman J. Weiss, \?^\? estimates for bi-invariant operators on compact Lie groups, Amer. J. Math. 94 (1972), 103 – 118. · Zbl 0239.43004 · doi:10.2307/2373596 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.