×

On a K-space of constant holomorphic sectional curvature. (English) Zbl 0276.53029


MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] GRAY, A., Nearly Kahler manifolds. J. Differential Geometry 4 (1970), 465-504. · Zbl 0201.54401
[2] KOTO, S., Curvatures m Hermitian spaces. Mem. Fac. of Educ. Niigata Univ 2 (1960), 151-156.
[3] MATSUMOTO, M., On 6-dimensional almost Tachibana spaces. Tensor N. S. 2 (1972), 250-252. · Zbl 0236.53048
[4] MIZUSAWA, H., AND S. KOTO, Holomorphically projective curvature tensors i certain almost Kahlerian spaces. J. Fac. Sci. Niigata Univ. 2 (1960), 33-43.
[5] SAWAKI, S., On Matsushima’s theorem in a compact Einstein -space. Thok Math. J. 13 (1961), 455-465. · Zbl 0109.40405
[6] SAWAKI, S. AND M. YAMAGATA, Notes on almost Hermitian manifolds. To appea in Tensor N. S. · Zbl 0271.53056
[7] TACHIBANA, S., On almost-analytic vectors in certain almost Hermitian manifolds. Thoku Math. J. 11 (1959), 351-363. · Zbl 0145.42002
[8] TACHIBANA, S., On infinitesimal conformal and projective transformations of compac if-spaces. Thoku Math. J. 13 (1961), 386-392. · Zbl 0112.13902
[9] TAKAMATSU, K., Some properties of i??-spaces with constant scalar curvature Bull. Fac. of Educ. Kanazawa Univ. 17 (1968), 25-27.
[10] TAKAMATSU, K., Some properties of 6-dimensional if-spaces. Kdai Math. Sem. Rep. 2 (1971), 215-232. · Zbl 0222.53036
[11] TAKAMATSU, K. AND Y. WATANABE, On conformally flat if-spaces. Differentia Geometry in honor of K. Yano, Kinokuniya Tokyo (1972), 483-488. · Zbl 0248.53024
[12] TAKAMATSU, K. AND Y. WATANABE, Classification of a conformally flat if-space. Thoku Math. J. 24 (1972), 435-440 · Zbl 0245.53045
[13] YANO, K., Differential geometry on complex and almost complex spaces. Per gamon Press (1965). · Zbl 0127.12405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.