Bott, Raoul On the Chern-Weil homomorphism and the continuous cohomology of Lie- groups. (English) Zbl 0276.55011 Adv. Math. 11, 289-303 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 30 Documents MSC: 55R40 Homology of classifying spaces and characteristic classes in algebraic topology 57T15 Homology and cohomology of homogeneous spaces of Lie groups PDF BibTeX XML Cite \textit{R. Bott}, Adv. Math. 11, 289--303 (1973; Zbl 0276.55011) Full Text: DOI OpenURL References: [1] Bott, R, Lectures on characteristic classes and foliations, (), 1-94 [2] Baum, Paul; Bott, R, On the zeroes of meromorphic vector-fields, (), 1-47 [3] Dold, A; Puppe, D, Homologie nicht-addiliver funktoren, anwendungen, Ann. inst. Fourier (Grenoble), 11, 201-312, (1961) · Zbl 0098.36005 [4] Illusie, L, Complexe cotangent relatif d’un faisceau d’algebras, C. R. acad. sc., Paris, 268, 323-326, (1969) · Zbl 0169.36201 [5] Hochschild, G; Mostow, G.D, Cohomology of Lie groups, Illinois J. math., 6, 367-401, (1962) · Zbl 0111.03302 [6] Kamber, F.W; Tondeur, Ph, Cohomologie des algèbres de Weil relatives tronquées, Algèbres de Weil semi-simpliciales “homomorphisme caractéristique d’un fibré principal feuilleté“, Comptes rendu acad. sci. Paris, t. 276, (5 Fevrier 1973, 2 Mai 1973, 21 Mai 1973), also, “Invariants of foliated bundles” to appear in Manuscripta Mathematica [7] Shulman, H, On characteristic classes, () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.