×

zbMATH — the first resource for mathematics

Conservative dynamical systems involving strong forces. (English) Zbl 0276.58005

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. È. Èl\(^{\prime}\)sgol\(^{\prime}\)c, Calculus of variations, Pergamon Press Ltd., London-Paris-Frankfurt, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962.
[2] Melvyn S. Berger, On periodic solutions of second order Hamiltonian systems. I, J. Math. Anal. Appl. 29 (1970), 512 – 522. · Zbl 0206.09904 · doi:10.1016/0022-247X(70)90065-X · doi.org
[3] -, Multiple solutions of non-linear operator equations arising from the calculus of variations, Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 10-27. MR 42 #5112.
[4] Melvyn S. Berger, Periodic solutions of second order dynamical systems and isoperimetric variational problems, Amer. J. Math. 93 (1971), 1 – 10. · Zbl 0222.34042 · doi:10.2307/2373443 · doi.org
[5] I. M. Gelfand and S. V. Fomin, Calculus of variations, Revised English edition translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. · Zbl 0127.05402
[6] William B. Gordon, On the relation between period and energy in periodic dynamical systems, J. Math. Mech. 19 (1969/1970), 111 – 114. · Zbl 0179.42004
[7] William B. Gordon, A theorem on the existence of periodic solutions to Hamiltonian systems with convex potential, J. Differential Equations 10 (1971), 324 – 335. · Zbl 0231.35006 · doi:10.1016/0022-0396(71)90055-6 · doi.org
[8] William B. Gordon, Periodic solutions to Hamiltonian systems with infinitely deep potential wells, Ordinary differential equations (Proc. NRL-MRC Conf., Math. Res. Center, Naval Res. Lab., Washington, D.C., 1971) Academic Press, New York, 1972, pp. 399 – 403.
[9] William B. Gordon, Physical variational principles which satisfy the Palais-Smale condition, Bull. Amer. Math. Soc. 78 (1972), 712 – 716. · Zbl 0255.58005
[10] William B. Gordon, An analytical criterion for the completeness of Riemannian manifolds, Proc. Amer. Math. Soc. 37 (1973), 221 – 225. · Zbl 0228.53032
[11] William B. Gordon, On the equivalence of second order systems occurring in the calculus of variations, Arch. Rational Mech. Anal. 50 (1973), 118 – 126. · Zbl 0261.49041 · doi:10.1007/BF00249879 · doi.org
[12] William B. Gordon, The existence of geodesics joining two given points, J. Differential Geometry 9 (1974), 443 – 450. · Zbl 0281.53035
[13] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. · Zbl 0108.10401
[14] Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299 – 340. · Zbl 0122.10702 · doi:10.1016/0040-9383(63)90013-2 · doi.org
[15] Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0164.11102
[16] Richard S. Palais, Critical point theory and the minimax principle, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 185 – 212.
[17] Richard S. Palais, Seminar on the Atiyah-Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. · Zbl 0137.17002
[18] R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165 – 172. · Zbl 0119.09201
[19] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. · Zbl 0070.10902
[20] Jacob T. Schwartz, Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307 – 315. · Zbl 0152.40801 · doi:10.1002/cpa.3160170304 · doi.org
[21] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.-London, 1971. · Zbl 0241.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.