×

zbMATH — the first resource for mathematics

The general quadratic optimization problem. (English) Zbl 0276.90044

MSC:
90C20 Quadratic programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Abadie (Ed.),Nonlinear programming (North-Holland, Amsterdam, 1967).
[2] M.L. Balinski and A.W. Tucker, ”Duality theory of linear programs: a constructive approach with applications”,SIAM Review 11 (1969) 347–377. · Zbl 0225.90024 · doi:10.1137/1011060
[3] E.M.L. Beale, ”Numerical methods”, in:Nonlinear programming, Ed. J. Abadie (North-Holland, Amsterdam, 1967) pp. 133–205. · Zbl 0168.40602
[4] R.W. Cottle, ”The principal pivoting method of quadratic programming”, in:Mathematics of the decision sciences, Part I, Eds. G.B. Dantzig and A.F. Veinott, Jr., Lectures in Applied Mathematics, Vol. 11 (American Mathematical Society, Providence, R.I., 1968) pp. 144–162. · Zbl 0196.22902
[5] R.W. Cottle and G.B. Dantzig, ”Complementary pivot theory of mathematical programming”,Linear Algebra and Its Applications 1 (1968) 103–125. · Zbl 0155.28403 · doi:10.1016/0024-3795(68)90052-9
[6] R.W. Cottle, G.J. Habetler and C.E. Lemke, ”Quadratic forms semidefinite over convex cones”, in:Proceedings of the Princeton symposium on mathematical programming, 1967, Ed. H.W. Kuhn (Princeton University Press, Princeton, N.J., 1970). · Zbl 0221.15018
[7] G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, N.J., 1963). · Zbl 0108.33103
[8] G.B. Dantzig and R.W. Cottle, ”Positive (semi-)definite programming”, in:Nonlinear programming, Ed. J. Abadie (North-Holland, Amsterdam, 1967) pp. 55–73. · Zbl 0178.22801
[9] G.B. Dantzig and A.F. Veinott, Jr. (Eds.),Mathematics of the decision sciences, Part I, Lectures in Applied Mathematics, Vol. 11 (American Mathematical Society, Providence, R.I., 1968). · Zbl 0177.29401
[10] E.L. Keller, ”Quadratic optimization and linear complementarity”, Dissertation, University of Michigan, Ann Arbor, Mich. (1969). · Zbl 0181.20501
[11] H.P. Kunzi and W. Krelle,Nonlinear programming (Blaisdell, Waltham, Mass., 1966).
[12] H.W. Kuhn (Ed.),Proceedings of the Princeton symposium on mathematical programming, 1967 (Princeton University Press, Princeton, N.J., 1970).
[13] H.W. Kuhn and A.W. Tucker, ”Nonlinear programming”, in:Proceedings of the second Berkeley symposium on mathematical statistics and probability, Ed. J. Neyman (University of California Press, Berkeley, Calif., 1951) pp. 481–492.
[14] C.E. Lemke, ”Bimatrix equilibrium points and mathematical programming”,Management Science 11 (1965) 681–689. · Zbl 0139.13103 · doi:10.1287/mnsc.11.7.681
[15] T.D. Parsons, ”A combinatorial approach to convex quadratic programming”, Dissertation, Princeton University, Princeton, N.J. (1966). Revised inLinear Algebra and Its Applications 3 (1970) 359–378. · Zbl 0198.24503
[16] A.W. Tucker, ”Principal pivotal transforms of square matrices”,SIAM Review 5 (1963) 305.
[17] A.W. Tucker, ”A least distance approach to quadratic programming”, in:Mathematics of the decision sciences, Part I, Eds. G.B. Dantzig and A.F. Veinott, Jr., Lectures in Applied Mathematics, Vol. 11 (American Mathematical Society, Providence, R.I., 1968) pp. 163–176. · Zbl 0228.90038
[18] C. van de Panne and A. Whinston, ”A comparison of two methods for quadratic programming”,Operations Research 14 (1966) 422–441. · Zbl 0138.41305 · doi:10.1287/opre.14.3.422
[19] C. van de Panne and A. Whinston, ”The symmetric formulation of the simplex method for quadratic programming”,Econometrica 37 (1969) 507–527. · Zbl 0183.49004 · doi:10.2307/1912797
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.