Falk, James E. A linear max-min problem. (English) Zbl 0276.90053 Math. Program. 5, 169-188 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 40 Documents MSC: 91A05 2-person games 90C30 Nonlinear programming PDF BibTeX XML Cite \textit{J. E. Falk}, Math. Program. 5, 169--188 (1973; Zbl 0276.90053) Full Text: DOI OpenURL References: [1] M. Balinski, ”An algorithm for finding all vertices of a convex polyhedral set”,SIAM Journal 9 (1) (1961) 72–88. · Zbl 0108.33203 [2] C.A. Burdet, ”Deux modèles de minimisation d’une fonction économique concave”, R.I.R.O. No. V-1-1970 (1970) 79–84. · Zbl 0205.22502 [3] A.V. Cabot, ”Variations on a cutting plane method for solving concave minimization problems with linear constraints”, Indiana University (1972). · Zbl 0348.90131 [4] J.M. Danskin,The theory of max–min (Springer, Berlin, 1967). · Zbl 0154.20009 [5] H. Konno, ”Bilinear programming: Part I. Algorithm for solving bilinear programs”, Technical Report No. 71-9, Operations Research House, Stanford, Calif. (1971). [6] H. Konno, ”Bilinear programming: Part II. Applications of bilinear programming”, Technical Report No. 71-10, Operations Research House, Stanford, Calif. (1971). [7] R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, N.J., 1970). · Zbl 0193.18401 [8] H. Tuy, ”Concave programming under linear constraints”,Soviet Mathematics, Doklady 5 (6) (1964). · Zbl 0204.19401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.