×

zbMATH — the first resource for mathematics

Sur la formule des traces de Selberg. (French) Zbl 0277.12011

MSC:
11R56 Adèle rings and groups
11F12 Automorphic forms, one variable
43A85 Harmonic analysis on homogeneous spaces
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] V. BARGMANN , Irreducible unitary representation of the Lorentz group [Ann. of Math., (2), vol. 48, 1947 , p. 568-640]. MR 9,133a | Zbl 0045.38801 · Zbl 0045.38801
[2] M. BATEMAN and A. ERDÉLYI , Tables of Integral Transforms , ..., vol. I, Mac Graw-Hill Book Company, 1954 .
[3] A. BLANCHARD , Initiation à la théorie analytique des nombres premiers , Dunod, Paris, 1969 . MR 39 #5487 | Zbl 0198.37602 · Zbl 0198.37602
[4] A. BOREL , Ensembles fondamentaux pour les groupes arithmétiques et formes automorphes , Secrét. Math. E. N. S., 45, rue d’Ulm, Paris, 5e, 1967 .
[5] M. DUFLO et J.-P. LABESSE , C. R. Acad. Sc., t. 270, série A, 1970 , p. 1154-1157. MR 42 #425 | Zbl 0257.12009 · Zbl 0257.12009
[6] L. EHRENPREIS and F. I. MAUTNER , Some properties of the Fourier-transforms on semisimple Lie groups . I [Ann. of. Math., (2), vol. 61, 1955 , p. 406-439]. MR 16,1017b | Zbl 0066.35701 · Zbl 0066.35701
[7] L. EHRENPREIS and F. I. MAUTNER , Some properties of the Fourier-transforms on semisimple Lie groups . II (Trans. Amer. Math. Soc., vol. 84, 1957 , p. 1-55). MR 18,745f | Zbl 0079.13201 · Zbl 0079.13201
[8] L. EHRENPREIS and F. I. MAUTNER , Some properties of the Fourier-transforms on semisimple Lie groups . III (Trans. Amer. Math. Soc., vol. 90, 1959 , p. 431-484). MR 21 #1541 | Zbl 0086.09904 · Zbl 0086.09904
[9] M. EICHLER , Eine Verallgemeinerung der Abelschen Integrale (Math. Z., Bd. 67, 1957 , p. 267-298). MR 19,740a | Zbl 0080.06003 · Zbl 0080.06003
[10] D. K. FADDEEV , Décomposition en fonctions propres de l’opérateur de Laplace sur le domaine fondamental d’un groupe discret opérant sur le plan de Lobatchevski (en russe) (Trudy Mosk. Mat. o. Ba., vol. 17, 1967 ).
[11] I. M. GEL’FAND , M. I. GRAEV and I. I. PYATETSKII-SHAPIRO , Representation Theory and Automorphic Functions , W. B. Saunders Company, 1969 . MR 38 #2093 | Zbl 0177.18003 · Zbl 0177.18003
[12] R. GODEMENT , A Theory of Spherical Functions . I (Trans. Amer. Math. Soc., vol. 73, 1952 , p. 496-556). MR 14,620c | Zbl 0049.20103 · Zbl 0049.20103
[13] R. GODEMENT , Analyse spectrale des fonctions modulaires , Séminaire Bourbaki, Exp. 278, vol. 1964 - 1965 , W. A. Benjamin Inc., New York, 1966 . Numdam | Zbl 0226.20047 · Zbl 0226.20047
[14] HARISH-CHANDRA , Spherical functions on a semisimple Lie group . II (Amer. J. Math., vol. 80, 1958 , p. 241-310). MR 20 #925 | Zbl 0093.12801 · Zbl 0093.12801
[15] HARISH-CHANDRA , Automorphic forms on semisimple Lie groups (Lecture Notes in Mathematics, n^\circ 62, Springer-Verlag, 1968 ). MR 38 #1216 | Zbl 0186.04702 · Zbl 0186.04702
[16] L. HÖRMANDER , Linear Partial Differential Operators , Springer-Verlag, 1963 . · Zbl 0108.09301
[17] Y. IHARA , Hecke polynomials as congruence \zeta functions in elliptic modular case (Ann. of Math., vol. 85, 1967 , p. 267-295). MR 34 #7470 | Zbl 0181.36501 · Zbl 0181.36501
[18] H. JACQUET and R. P. LANGLANDS , Automorphic Forms on GL (2) (Lecture Notes in Mathematics, n^\circ 114, Springer-Verlag, 1970 ). MR 53 #5481 | Zbl 0236.12010 · Zbl 0236.12010
[19] R. P. LANGLANDS , Functional Equations satisfied by Eisenstein series (Preprint). · Zbl 0332.10018
[20] A. SELBERG , Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series (J. Indian Math. Soc., vol. 20, 1956 , p. 47-87). MR 19,531g | Zbl 0072.08201 · Zbl 0072.08201
[21] A. SELBERG , Discontinuous groups and Harmonic Analysis , Proceedings of the International Congress of Mathematiciens, Stockholm, 1962 . · Zbl 0209.44001
[22] J. TATE , Fourier Analysis in Number Fields and Hecke’s Zeta-Functions (Thesis, 1950 ); in Algebraic Number Theory, Academic Press, 1967 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.