×

Alcune proprieta delle varieta algebriche reali. (Italian) Zbl 0277.14010


MSC:

14G25 Global ground fields in algebraic geometry
13A15 Ideals and multiplicative ideal theory in commutative rings
32C05 Real-analytic manifolds, real-analytic spaces
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] J.P. Serre , Faisceaux algebriques cohérents . Ann. of Maths 61 , 1955 . MR 68874 | Zbl 0067.16201 · Zbl 0067.16201 · doi:10.2307/1969915
[2] J.P. Serre , Géométrie algebrique et géométrie analytique . Annales de l’Institut Fourier . Tome VI ( 1956 ). Numdam | Zbl 0075.30401 · Zbl 0075.30401 · doi:10.5802/aif.59
[3] H. Whitney , Elementary structure of real algebraic varieties . Ann. of Maths. 66 , N. 3 , ( 1957 ). MR 95844 | Zbl 0078.13403 · Zbl 0078.13403 · doi:10.2307/1969908
[4] M. Artin , On the solution of analytic equations . Inventiones math. 5 ( 1968 ). MR 232018 | Zbl 0172.05301 · Zbl 0172.05301 · doi:10.1007/BF01389777
[5] J.J. Risler , Une caracterisation des idéaux des varietés algebriques reelles . C. R. Acad. Sc. Paris , t. 271 (9 decembre 1970 ). MR 274437 | Zbl 0211.53401 · Zbl 0211.53401
[6] S.S. Abhyankar , Concepts of order and rank on a complex space and a condition for normality . Math. Ann. 141 ( 1960 ). MR 123020 | Zbl 0107.15001 · Zbl 0107.15001 · doi:10.1007/BF01360171
[7] A. Tocnoli , Proprietà globali degli spazi analitici reali . Ann. di Matem. pura ed appl. ( IV ), Vol. LXXV ( 1967 ). Zbl 0158.33001 · Zbl 0158.33001 · doi:10.1007/BF02416802
[8] M.F. Atiyah , I.G. Macdonald , Introduction to commutative algebra . Addison Wesley ( 1969 ). MR 242802 | Zbl 0175.03601 · Zbl 0175.03601
[9] J. Dieudonné , Algebraic geometry . Adv. Math . ( 1969 ). MR 244267 | Zbl 0185.49102 · Zbl 0185.49102 · doi:10.1016/0001-8708(69)90006-1
[10] D. Mumford , Introduction to algebraic geometry (preliminary version of first 3 chapters), Harvard University . · Zbl 0114.13106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.