Minimal realization of machines in closed categories. (English) Zbl 0277.18003


18B20 Categories of machines, automata
68Q45 Formal languages and automata
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
Full Text: DOI


[1] M. A. Arbib and H. P. Zeiger, On the relevance of abstract algebra to control theory, Automatica — J. IFAC 5 (1969), 589 – 606. · Zbl 0199.49303 · doi:10.1016/0005-1098(69)90026-0
[2] Samuel Eilenberg and Jesse B. Wright, Automata in general algebras, Information and Control 11 (1967), 452 – 470. · Zbl 0175.27902
[3] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0186.56802
[4] J. A. Goguen, Realization is universal, Math. Systems Theory 6 (1972/73), 359 – 374. · Zbl 0248.18015 · doi:10.1007/BF01843493
[5] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in mathematical system theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1969. · Zbl 0231.49001
[6] G. M. Kelly, Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc. 9 (1969), 124 – 142. · Zbl 0169.32604
[7] Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. · Zbl 0232.18001
[8] A. Nerode, Linear automaton transformations, Proc. Amer. Math. Soc. 9 (1958), 541 – 544. · Zbl 0089.33403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.