×

zbMATH — the first resource for mathematics

The infinite groups of Lie and Cartan. I: The transitive groups. (English) Zbl 0277.58008

MSC:
58H05 Pseudogroups and differentiable groupoids
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Cartan, Sur la structure des groupes infinis de transformations,Ann. Ec. Normale, t. 21 (1904) pp. 153–206 and t. 22 (1905) pp. 219–308 or OEuvres, partie II, vol. 2, pp. 571–714.
[2] E. Cartan, Les sous-groupes des groupes continus de transformations,Ann. Ec. Normale, t. 25 (1908) pp. 57–194 or OEuvres, Partie II, vol. 2, pp. 719–856. · JFM 39.0206.04
[3] E. Cartan, Les groupes de transformations continus, infinis, simples,Ann. Ec. Normale, t. 26 (1909) pp. 93–161. · JFM 40.0193.02
[4] E. Cartan, Les problèmes d’équivalence, OEuvres, Partie II, vol. 2, pp. 1311–1334.
[5] E. Cartan, La structure des groupes infinis, OEuvres, Partie II, vol. 2, pp. 1335–1384.
[6] E. B. Dynkin, The maximal subgroups of the classical groups,Trans. Amer. Math. Soc., Ser. 2, vol. 6 (1957) pp. 245–378. · Zbl 0077.03403
[7] V. Guillemin and S. Sternberg, An algebraic model of transitive differential geometry,Bull. Amer, Math. Soc., vol. 70 (1964) pp. 16–47. · Zbl 0121.38801 · doi:10.1090/S0002-9904-1964-11019-3
[8] S. Kobayashi, Le groupe des transformations qui laissent invariant le parallelismeColloque de Topologie de Strasbourg (1954).
[9] B. Kostant, A characterization of the classical groups,Duke Math. J. vol. 25 (1958) pp. 107–123. · Zbl 0079.04301 · doi:10.1215/S0012-7094-58-02510-9
[10] M. Kuranishi, On E. Cartan’s prolongation theorem of exterior differential systems,Amer. J. Math., vol. 79 (1957) pp. 1–47. · Zbl 0077.29701 · doi:10.2307/2372381
[11] M. Kuranishi, On the local theory of continuous infinite pseudo-groups, I, II,Nagoya Math. Journal, vol. 15 (1959) pp. 225–260 and vol. 19 (1961) pp. 55–91. · Zbl 0212.56501
[12] Y. Matsushima, Sur les algebras de Lie lineaires semi-involutives,Colloque de topologie de Strasbourg (1954).
[13] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds,Ann. of Math. vol. 65 (1957) pp. 391–104. · Zbl 0079.16102 · doi:10.2307/1970051
[14] D. Quillen, Thesis, Ph. D., Harvard University, 1964.
[15] D. C. Spencer, Deformation of structures on manifolds defined by transitive continuous pseudogroups,Ann. of Math. (2) 76, (1962), 306–445. · Zbl 0124.38601 · doi:10.2307/1970277
[16] S. Sternberg,Lectures on the infinite Lie groups, Harvard, (1961), (multilithed)– (no longer available). · Zbl 0131.26802
[17] S. Sternberg, ”Lectures on Differential Geometry”, New Jersey, Prentice-Hall, Inc., 1964. · Zbl 0129.13102
[18] H. Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen.Math. Zeit. 23 (1925) p-271–309, 24 (1926) pp. 329–395. · JFM 51.0319.01 · doi:10.1007/BF01506234
[19] O. Zariski and P. Samuel, ”Commutative Algebra”, Van Nostrand, Princeton, N. J., 1958. · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.