Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème exterieur dans R\(^3\). (French) Zbl 0277.65074


65R20 Numerical methods for integral equations
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
Full Text: DOI EuDML


[1] J. BARROS NETO, Inhomogeneous boundary value problems in a halfsplace. AnSc. Norm. Sup. Pisa, 19 (1965), 331-365. Zbl0145.14703 MR185265 · Zbl 0145.14703
[2] J. BOUTET DE MONVEL, Cours au CIME, Stresa, sept. 1968, Cremonese, Roma (1969).
[3] P.L. BUTZER et H. BERENS, Semi-group of operatoirs and approximations. Spring Verlag, Berlin (1967). Zbl0164.43702 · Zbl 0164.43702
[4] P. G. QARLET et P. A. RAVIART, General Lagrange and Hermite interpolationin Rn with applications to finite element methods. s. Arch. Rat. Mech. Anal., 46 (1972) 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[5] J. DENY et J. L. LIONS, Les espaces du type Beppo-Levi, Ann. Inst. Fourier, 5 (1953-54), 305-370. Zbl0065.09903 MR74787 · Zbl 0065.09903 · doi:10.5802/aif.55
[6] R. M. JAMES, On the remarkable accuracy of the vortex lattice method. d. ComputerMethods in Appl. Mec. and eng., 1 (1972), 59-79. Zbl0272.65121 MR423994 · Zbl 0272.65121 · doi:10.1016/0045-7825(72)90021-7
[7] B. HANOUZET, Espacesde Sobolev avec poid. . Application au problème de Dirichlet dans un demi-espace.] Rend, del Sem. Math, délia Univ. di Padova, XLVI (1971), 277-272. Zbl0247.35041 MR310417 · Zbl 0247.35041
[8] J. L. HESS, Higher order numerical solution of the integral equation for the two-dimensional neumann problem. Computer Methods in Appl. Mec. and eng., 2 (1973), 1-15. Zbl0253.76011 · Zbl 0253.76011 · doi:10.1016/0045-7825(73)90018-2
[9] HORMANDER, Liniear partial differential operators. Springer Verlag, Berlin (1963). Zbl0108.09301 · Zbl 0108.09301
[10] J. L. LIONS et E. MAGENES, Problèmes aux limites non homogène, , tome I, DunodParis (1968). · Zbl 0165.10801
[11] S. G. MIKHLIN, Linear integral equations. Vol. II, Gordon and Breach. Science publishers inc. New-York (1960).
[12] N. I. MUSKHELISHVELI, Some basic problems of the mathematical theory of elastidty. Noordhoff L[td-Groningen Holland (1953). Zbl0052.41402 · Zbl 0052.41402
[13] J. NECAS, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). MR227584 · Zbl 1225.35003
[14] H.A. SCHENCK, Improved intégral formulation for acoustic problems. Journalof Acoust. Soc. of America, 44 (1968), 41-58. Zbl0187.50302 · Zbl 0187.50302 · doi:10.1121/1.1911085
[15] R. SEELEY, Cours CIME, Stresa, sept. 1968, Cremonese, Roma (1969). MR259335
[16] G. T. SYMM, Integral equation methods in potential theory, II Proc. Roy. Soc. London A, 275 (1963), 33-46. Zbl0112.33201 MR154076 · Zbl 0112.33201 · doi:10.1098/rspa.1963.0153
[17] O. C. ZIENKIEWICZ, The Finite Element Method in Engineering Science. Mc Graw- Hill, London (1971). Zbl0237.73071 MR315970 · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.