Stark, H. M. Some effective cases of the Brauer-Siegel theorem. (English) Zbl 0278.12005 Invent. Math. 23, 135-152 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 11 ReviewsCited in 112 Documents MSC: 11R42 Zeta functions and \(L\)-functions of number fields PDF BibTeX XML Cite \textit{H. M. Stark}, Invent. Math. 23, 135--152 (1974; Zbl 0278.12005) Full Text: DOI EuDML OpenURL References: [1] Bateman, P.T., Grosswald, E.: Imaginary quadratic fields with unique factorization. Illinois J. Math.6, 187-192 (1962) · Zbl 0100.03103 [2] Brauer, R.: Representations of finite groups. In: Lectures on Modern Mathematics. Vol. 1, T.L. Saaty (ed.) New York: Wiley 1963 · Zbl 0124.26504 [3] Davenport, H.: Multiplicative Number Theory. Chicago: Markham 1967 · Zbl 0159.06303 [4] Davenport, H.: Eine Bemerkung über DirichletsL-Funktionen. Göttinger Nachrichten, 203-212 (1966) · Zbl 0146.05503 [5] Haneke, W.: Über die reellen Nullstellen der DirichletschenL-Reihen. Acta Arith.22, 391-421 (1973) · Zbl 0262.10025 [6] Heilbronn, H.: On real simple zeros of Dedekind ?-functions, Proceedings of the 1972 Number Theory Conference, Boulder. 108-110, to appear in Can. J.25 (1973) [7] Lang, S.: Algebraic Number Theory. Reading: Addison-Wesley 1970 · Zbl 0211.38404 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.