Schneider, Hans; Turner, Robert E. L. Matrices Hermitian for an absolute norm. (English) Zbl 0278.15012 Linear Multilinear Algebra 1, 9-31 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 11 Documents MSC: 15B57 Hermitian, skew-Hermitian, and related matrices 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory PDF BibTeX XML Full Text: DOI References: [1] Bauer F. L., Numer. Math. 4 pp 103– (1962) · Zbl 0117.11004 · doi:10.1007/BF01386300 [2] Bauer F. L., Numer.Math. 3 pp 257– (1961) · Zbl 0111.01602 · doi:10.1007/BF01386026 [3] Bonsall F.F., London Math. Soc. Lecture Note Series 2 (1971) [4] Crabb M.J., J.London Math.Soc 2 (2) pp 741– (1970) [5] Gries D., Numer.Math. 10 (2) pp 30– (1967) · Zbl 0164.17603 · doi:10.1007/BF02165157 [6] Lumer A, Trans. Amer. Math. Soc. 100 (2) pp 29– (1961) · doi:10.1090/S0002-9947-1961-0133024-2 [7] Nirschl N., Numer. Math. 6 (2) pp 355– (1964) · Zbl 0126.32102 · doi:10.1007/BF01386085 [8] Palmer T.W., Trans. American Math. Soc. 133 (2) pp 385– (1968) · doi:10.1090/S0002-9947-1968-0231213-6 [9] Palmer T.W., Bull. American Math. Soc. 74 (2) pp 538– (1968) · Zbl 0159.18503 · doi:10.1090/S0002-9904-1968-11998-6 [10] Vidav I., Operatoren. Math. Zeit. 66 (2) pp 121– (1956) · Zbl 0071.11503 · doi:10.1007/BF01186601 [11] Tam K.W., Pacific J. Math. 31 (2) pp 233– (1969) · Zbl 0189.43104 · doi:10.2140/pjm.1969.31.233 [12] Zenger C., Numer.Math. 12 (2) pp 96– (1968) · Zbl 0182.49103 · doi:10.1007/BF02173403 [13] Ostrowski A.M., Math. Zeitschrift 63 (2) pp 2– (1955) · Zbl 0065.24701 · doi:10.1007/BF01187920 [14] Stoer J., Numer. Math. 4 (2) pp 158– (1962) · Zbl 0117.11101 · doi:10.1007/BF01386309 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.