×

Duality on complex spaces. (English) Zbl 0278.32007


MSC:

32C35 Analytic sheaves and cohomology groups
32C15 Complex spaces
32F10 \(q\)-convexity, \(q\)-concavity
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] A. Andreotti and H. Grauert , Théorèmes definitude pour la cohomologie des espaces complexes , Bull. Soc. Math. France v. 90 ( 1962 ) p. 193 - 259 . Numdam | MR 150342 | Zbl 0106.05501 · Zbl 0106.05501
[2] A. Andreotti and E. Vesentini , Carleman estimates for the Laplace-Beltrami equation on complex manifolds , Publ. I. H. E. S. ( 1965 ) n. 25 . Numdam | MR 175148 | Zbl 0138.06604 · Zbl 0138.06604
[3] C. Banica and O. Stanasila , Sur la profondeur d’un faisceau analytique cohérent sur un espace de Stein , C. R. Ac. Sci. Paris v. 269 ( 1969 ) p. 636 - 639 . MR 254270 | Zbl 0182.11103 · Zbl 0182.11103
[4] G.E. Bredon , Sheaf theory , McGraw Hill , New York , 1967 . MR 221500 | Zbl 0158.20505 · Zbl 0158.20505
[5] A. Cassa , Coomologia separate sulle varietà analitiche complesse , Ann. Sc. Nor. Pisa , v. 25 ( 1971 ) p. 291 - 323 . Numdam | MR 357851 | Zbl 0232.46010 · Zbl 0232.46010
[6] R. Godement , Théorie des faisceaux , Hermann , Paris , 1958 . MR 102797 · Zbl 0080.16201
[7] R.C. Gunning and H. Rossi , Analytic functions of several complex variables , Prentice-Hall, Inc. Englewood Cliffs, N. J. 1965 . MR 180696 | Zbl 0141.08601 · Zbl 0141.08601
[8] A. Grothendieck , Espaces vectoriels topologiques , Societad Mat . Sao Paolo , 1958 . Zbl 0058.33401 · Zbl 0058.33401
[9] J.L. Kelley and T. Namioka , Linear topological vectors spaces , D. Van Nostrand , Princeton , 1963 . · Zbl 0318.46001
[10] G. Köthe , Topologische lineare Räume , Springer , Berlin , 1960 . MR 130551 | Zbl 0093.11901 · Zbl 0093.11901
[11] R. Kultze , Dualität von Homologie und Cohomologiegruppen , Arch. Math. v. 10 ( 1959 ) MR 114205 | Zbl 0178.56902 · Zbl 0178.56902
[12] B. Malgrange . Systèmes differentiels a coefficients constants , Sem. Bourbaki 265 - 01 ( 1962 ).
[13] A. Martineau , Sur le théorème du graphe fermé , C. R. Ac. Sci Paris , n. 263 ( 1966 ) p. 870 - 871 . MR 206677 | Zbl 0151.19203 · Zbl 0151.19203
[14] R. Narasimhan , Introduction to the theory of analytic spaces , Springer Lecture Notes 25 , 1966 . MR 217337 | Zbl 0168.06003 · Zbl 0168.06003
[15] H.J. Reiffen . Riemannische Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger , Math. Ann , v. 164 ( 1966 ) p 272 - 273 . MR 197779 | Zbl 0142.41102 · Zbl 0142.41102
[16] D.A. Raikov . Double closed-graph theorem for topologioal linear spaces , Sibirski Mat. Zhurnal v. 7 ( 1966 ) p. 353 - 372 . MR 198196 | Zbl 0171.10701 · Zbl 0171.10701
[17] J.P. Ramis and G. Ruget , Complexes dualisants et théorème de dualité en géometrie analytique complexe , Publ. I. H. E. S. ( 1970 ) n. 38 p. 77 - 91 . Numdam | MR 279338 | Zbl 0206.25006 · Zbl 0206.25006
[18] H.H. Schaefer , Topological vector spaces , MacMillan , New York , 1966 . MR 193469 | Zbl 0141.30503 · Zbl 0141.30503
[19] L. Schwartz , Sur le théorème du graphe fermé , C. R. Ac. Sci. Paris v. 263 ( 1966 ) p. 602 - 605 . MR 206676 | Zbl 0151.19202 · Zbl 0151.19202
[20] J.P. Serre , Un théorème de dualité , Comm. Math. Helvetici , v. 29 ( 1955 ) pp. 9 - 26 . MR 67489 | Zbl 0067.16101 · Zbl 0067.16101
[21] J.P. Serre , Faisceaux algébriques cohérents , Annals of Math. v. 61 ( 1955 ) pp. 197 - 278 . MR 68874 | Zbl 0067.16201 · Zbl 0067.16201
[22] S e Silva , Su certe classi di spazi convessi importanti per le applicazioni , Rend. Mat. v. 5 ( 1955 ) p. 388 - 410 . Zbl 0064.35801 · Zbl 0064.35801
[23] K. Souminen , Duality for coherent sheaves on analytic manifolds , An. Ac. Fennicae ( 1968 ). Zbl 0185.15205 · Zbl 0185.15205
[24] F. Treves , Topological vector spaces distributions and kernels , Academic press , New York , 1967 . MR 225131 | Zbl 0171.10402 · Zbl 0171.10402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.