×

zbMATH — the first resource for mathematics

Sur la régularité des solutions de l’équation \(\text{div}\;A (x,u,\nabla u) = B(x,u,\nabla u)\) avec des conditions aux limites unilatérales et melées. (French) Zbl 0278.35023

MSC:
35G20 Nonlinear higher-order PDEs
35D10 Regularity of generalized solutions of PDE (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Cartan,Théorie du potentiel newtonien etc., Bull. Soc. Math. de France,73 (1945). · Zbl 0061.22609
[2] E. De Giorgi,Sulla differenziabilità e l’analiticità delle estremali ecc., Mem. Accad. Sc. Torino, s. 3, t. 3 (1957). · Zbl 0084.31901
[3] G. Fichera,Un teorema generale di semicontinuità per gli integrali multipli ecc., Atti del Convegno Lagrangiano, Torino, 22-25 octobre 1963; Atti Accad. Sc. Torino,98 (1963-64).
[4] Ladyzenskaya, O. A.; Urel’Tseva, N. N., Linear and quasi-linear elliptic equations (1968), New York: Ac. Press, New York
[5] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod, Paris · Zbl 0189.40603
[6] J. L. Lions —G. Stampacchia,Variational inequalities, Comm. Pure Appl. Meth.,20 (1967).
[7] C. Miranda,Partial Differential Equations of Elliptic Type (second revised edition). Springer, 1970. · Zbl 0198.14101
[8] G. Stampacchia,Problemi al contorno ellittici ecc., Ann. Mat. Pura Appl.,51 (1960). · Zbl 0204.42001
[9] G. Stampacchia,Some limit cases of L^p-stimates for solutions etc., Comm. Pure Appl. Math.,16 (1963).
[10] G. Stampacchia,Le problème de Dirichlet pour les equations elliptiques etc., Ann. Inst. Fourier,15 (1965). · Zbl 0151.15401
[11] H. Beirão da Veiga,Sulla hölderianità delle soluzioni di alcune disequazioni ecc., Ann. Mat. Pura Appl.,83 (1969). · Zbl 0201.13401
[12] H. Beirão da Veiga,Régularité pour une classe d’inéquations non linéaires, C. R. Acad. Sc. Paris, t. 271, s. A-23 (6 juillet 1970). · Zbl 0204.11801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.