×

zbMATH — the first resource for mathematics

The minimum root separation of a polynomial. (English) Zbl 0278.65049

MSC:
65H05 Numerical computation of solutions to single equations
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. E. Collins, ”Computing time analyses for some arithmetic and algebraic algorithms,” Proc. 1968 Summer Institute on Symbolic Mathematical Computation, IBM Corp., Cambridge, Mass., 1961, pp. 197-231.
[2] George E. Collins, The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach. 18 (1971), 515 – 532. · Zbl 0226.65042
[3] Lee E. Heindel, Integer arithmetic algorithms for polynomial real zero determination, J. Assoc. Comput. Mach. 18 (1971), 533 – 548. · Zbl 0226.65039
[4] Donald E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969. · Zbl 0191.18001
[5] R. G. K. Loos, ”A constructive approach to algebraic numbers,” Math. of Comp. (submitted.)
[6] Henryk Minc and Marvin Marcus, Introduction to linear algebra, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1965. · Zbl 0142.26801
[7] Michael T. McClellan, The exact solution of systems of linear equations with polynomial coefficients, J. Assoc. Comput. Mach. 20 (1973), 563 – 588. · Zbl 0273.65030
[8] D. R. Musser, Algorithms for Polynomial Factorization, Univ. of Wisconsin Comp. Sci. Dept. Technical Report No. 134 (Ph.D Thesis), Sept. 1971, 174 pp.
[9] J. R. Pinkert, Algebraic Algorithms for Computing the Complex Zeros of Gaussian Polynomials, Univ. of Wisconsin Comp. Sci. Dept. Ph.D. Thesis, May 1973, Technical Report No. 188, July 1973.
[10] B. L. van der Waerden, Moderne Algebra. Vol. I, Springer, Berlin, 1930; English transl., Ungar, New York, 1949. MR 10, 587. · JFM 56.0138.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.