×

zbMATH — the first resource for mathematics

Continuous selections and differential relations. (English) Zbl 0279.54007

MSC:
54C65 Selections in general topology
54C60 Set-valued maps in general topology
93B05 Controllability
34H05 Control problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Castaing, C, Quelques problèmes de mesurabilité liés à la théorie de la commande, C. R. acad. sci. Paris, 262, 409-411, (1966) · Zbl 0136.34303
[2] Eggleston, H.C, Convexity, () · Zbl 0086.15302
[3] Filippov, A.F, Classical solutions of differential equations with multivalued right-hand side, SIAM J. control, 5, 609-621, (1967)
[4] Filippov, A.F, On the existence of solutions of multivalued differential equations, Mat. zametki, 10, 307-313, (1971)
[5] Hermes, H, The generalized differential equation x· ϵR(t, x), Advances in math., 4, 149-169, (1970) · Zbl 0191.38803
[6] Hermes, H, Existence and properties of solutions of x· ϵR(t, x), (), 188-193
[7] Hermes, H, On continuous and measurable selections and the existence of solutions of generalized differential equations, (), 535-542 · Zbl 0214.09802
[8] Himmelberg, C.J; Van Vleck, F.S, Lipschitzian generalized differential equations, (), 159-169 · Zbl 0289.49009
[9] Jacobs, M.Q, Remarks on some recent extensions of Filippov’s implicit functions lemma, SIAM J. control, 5, 622-627, (1967) · Zbl 0189.16001
[10] {\scH. Kaczyński and C. Olech}, Existence of solutions of orientor fields with nonconvex right-hand side, to appear.
[11] Pliś, A, Remarks on measurable set-valued functions, Bull. acad. Pol. sci. Sér. sci. math. astr. phys., 9, 857-859, (1961) · Zbl 0101.04303
[12] Dragoni, G.Scorza, Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un’altra variabile, (), 102-108 · Zbl 0032.19702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.