×

zbMATH — the first resource for mathematics

Über offene Abbildungen auf die 3-Sphäre. (German) Zbl 0279.57004

MSC:
57Q45 Knots and links in high dimensions (PL-topology) (MSC2010)
55M25 Degree, winding number
57N10 Topology of general \(3\)-manifolds (MSC2010)
54C10 Special maps on topological spaces (open, closed, perfect, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Birman, J. S., Hilden, H. M.: The Homeomorphism Problem forS 3. Bull. Amer. math. Soc.79, 1006-1009 (1973) · Zbl 0272.57001
[2] Borel, A.: Seminar on Transformation Groups. Annals of Mathematics Studies No. 46, Princeton: Princeton University Press 1960 · Zbl 0091.37202
[3] Burde, G., Zieschang, H.: Neuwirthsche Knoten und Flächenabbilungen. Abh. math. Sem. Univ. Hamburg31, 239-246 (1967) · Zbl 0171.22402
[4] Church, P. T., Hemmingsen, E.: Light Open Maps onn-Manifolds II. Duke math. J.28, 607-623 (1962)
[5] Fox, R. H.: Construction of Simply Connected 3-Manifolds. In: Topology of 3-Manifolds, (Athens, Georgia 1961) pp. 213-216, Englewood Cliffs: Prentice-Hall 1962 · Zbl 1246.57040
[6] Hopf, H.: Über den Defekt stetiger Abbildungen von Mannigfaltigkeiten. Rend. Mat., V. Ser. 21, 273-285 (1962) · Zbl 0116.14704
[7] Hudson, J. F. P.: Piecewise Linear Topology. New York: Benjamin 1969 · Zbl 0189.54507
[8] Lickorish, W. B. R.: A Foliation for 3-Manifolds. Ann. of Math. II. Ser.82, 414-420 (1965) · Zbl 0142.41104
[9] Montesinos, J. M.: Three Manifolds as 3-fold Branched Covers ofS 3. Preprint · Zbl 0326.57002
[10] Olivier, R.: Über den Defekt simplizialer Abbildungen von Mannigfaltigkeiten. Commentarii math. Helvet.42, 49-59 (1967) · Zbl 0148.17302
[11] Schmid, J.: Über eine Klasse von Verkettungen. Math. Z.81, 187-205 (1963) · Zbl 0108.36504
[12] Tucker, A. W.: Branched and Folded Coverings. Bull. Amer. math. Soc.42, 859-862 (1936) · Zbl 0015.37505
[13] Waldhausen, F.: Über Involutionen der 3-Sphäre. Topology8, 81-91 (1969) · Zbl 0185.27603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.