Williams, R. F. Expanding attractors. (English) Zbl 0279.58013 Publ. Math., Inst. Hautes Étud. Sci. 43, 169-203 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 16 ReviewsCited in 165 Documents MSC: 37D99 Dynamical systems with hyperbolic behavior 54F15 Continua and generalizations 37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics 54H20 Topological dynamics (MSC2010) PDFBibTeX XMLCite \textit{R. F. Williams}, Publ. Math., Inst. Hautes Étud. Sci. 43, 169--203 (1973; Zbl 0279.58013) Full Text: DOI Numdam EuDML References: [1] V. Alekseev, Quasirandom dynamical systems, I,Math. USSR Sbornik,5 (1968), 73–128. · Zbl 0198.56903 · doi:10.1070/SM1968v005n01ABEH002587 [2] M. Gromov,Dokl. Akad. Nauk SSSR, Transversal mappings of foliations,182 (1968), 255–258=Soviet Math. Dokl.,9 (1968), 1126–1129. · Zbl 0185.27601 [3] A. Haefliger, Structures feuilletées et cohomologie à valeurs dans un faisceau de groupoides,Comm. Math. Helv.,32 (1957), 248–329. · Zbl 0085.17303 · doi:10.1007/BF02564582 [4] ——, Feuilletages sur les variétés ouvertes,Topology,9 (1970), 183–194. · Zbl 0196.26901 · doi:10.1016/0040-9383(70)90040-6 [5] M. Hirsch, J. Palis, C. Pugh andM. Shub, Neighborhoods of hyperbolic sets,Inventiones Math.,9 (1970), 121–134. · Zbl 0191.21701 · doi:10.1007/BF01404552 [6] M. Hirsch andC. Pugh, The stable manifold theorem, see [10]=Global Analysis, 125–163. [7] J. Munkres,Elementary Differentiable Topology, Princeton Univ. Press., Princeton, 1963. [8] M. Shub, Endomorphisms of compact differentiable manifolds,Amer. J. of Math.,91 (1969), 175–199. · Zbl 0201.56305 · doi:10.2307/2373276 [9] —, Expanding maps,Global Analysis=[10], 273–276. [10] S. S. Smale, Differentiable dynamical systems,Bull. Amer. Math. Soc.,13 (1967), 747–817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1 [11] —, andS. Chern, Editors,Global Analysis, Proceedings of Symposia in Pure Mathematics, Vol. 14, American Math. Soc., 1970. [12] —, Diffeomorphisms with many periodic points,Differential and Combinatorial Topology, Princeton Univ. Press, 1965, 63–80. [13] J. H. C. Whitehead, On C’ complexes,Ann. of Math.,41 (1940), 809–824. · Zbl 0025.09203 · doi:10.2307/1968861 [14] R. Williams, The structure of attractors,International Congress of Mathematicians, Nice, 1970. · Zbl 0213.50401 [15] —, Expanding attractors,Proceedings of the Mount Aigual Conference on Differential Topology, Univ. of Montpellier, 1969. · Zbl 0208.25801 [16] ——, One dimensional non-wandering sets,Topology,6 (1967), 473–487. · Zbl 0159.53702 · doi:10.1016/0040-9383(67)90005-5 [17] —, Classification of one-dimensional attractors,Global Analysis=[10], 341–361. [18] ——, The zeta function of an attractor,Conference on Topology of Manifolds, Prindel, Weber and Smith, Boston, 1968, 155–161. [19] C. Kuratowski,Topologie, vol. II, 3e éd., Warszawa, 1961. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.