×

A Monte Carlo evaluation of three nonmetric multidimensional scaling algorithms. (English) Zbl 0279.62015


MSC:

62H99 Multivariate analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
91E99 Mathematical psychology
65C05 Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Box, M. J. A comparison of several current optimization methods, and the use of transformations in constrained problems.Computer Journal, 1966,9, 67–77. · Zbl 0146.13304
[2] De Leeuw, J. The positive orthant method for nonmetric multidimensional scaling. Unpublished manuscript. University of Leiden, The Netherlands, 1969.
[3] Fletcher, R. A review of methods for unconstrained optimization. In R. Fletcher (Ed.),Optimization. New York: Academic Press, 1969. · Zbl 0194.20404
[4] Gleason, T. C. A general model for nonmetric multidimensional scaling. Michigan Mathematical Psychology Program Report No. MMPP 67-3, 1967, University of Michigan, Ann Arbor, Michigan.
[5] Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis.Biometrika, 1966,53, 325–338. · Zbl 0192.26003
[6] Guttman, L. A general nonmetric technique for finding the smallest coordinate space for a configuration of points.Psychometrika, 1968,33, 469–506. · Zbl 0205.49302
[7] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27. (a) · Zbl 0123.36803
[8] Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 115–129. (b) · Zbl 0123.36804
[9] Kruskal, J. B. How to use M-D-SCAL, a program to do multidimensional scaling and multidimensional unfolding. Unpublished manuscript. Bell Telephone Laboratories, Murray Hill, New Jersey, March 1968.
[10] Lingoes, J. C. An IBM 7090 program for Guttman-Lingoes smallest space analysis–1.Behavioral Science, 1965,10, 183–184.
[11] Lingoes, J. C. & Roskam, E. E. A mathematical and empirical study of two multidimensional scaling algorithms. Michigan Mathematical Psychology Program Report No. MMPP 71-1, April 1971, University of Michigan, Ann Arbor, Michigan.
[12] McGee, V. E. The multidimensional analysis of ”elastic” distances.British Journal of Mathematical and Statistical Psychology, 1966,19, 181–196.
[13] McGee, V. E. A reply to some criticisms of elastic multidimensional scaling.British Journal of Mathematical and Statistical Psychology, 1967,20, 243–247.
[14] McGee, V. E. Speech perception and the development of appropriate nonmetric analytical techniques. Office of Naval Research Report. NONR 3897-05. Washington, D. C., July 1969.
[15] Powell, M. J. D. A survey of numerical methods for unconstrained optimization.SIAM Review, 1970,12, 79–97. · Zbl 0193.13801
[16] Ramsey, J. O. Some statistical considerations in multidimensional scaling.Psychometrika, 1969,34, 167–182.
[17] Roskam, E. E.Metric analysis of ordinal data in psychology. Voorschoten, The Netherlands: VAM, 1968.
[18] Roskam, E. E. A comparison of principles for algorithm construction in nonmetric scaling. Michigan Mathematical Psychology Program Report No. MMPP 69-2, February 1969, University of Michigan, Ann Arbor, Michigan. (a)
[19] Roskam, E. E. Data theory and algorithms for nonmetric scaling. Unpublished manuscript. University of Nijmegen, The Netherlands, November 1969. (b)
[20] Schönemann, P. H. Fitting a simplex symmetrically.Psychometrika, 1970,35, 1–21. · Zbl 0197.16302
[21] Sherman, C. R. Nonmetric multidimensional scaling: A Monte Carlo study of the basic parameters.Psychometrika, 1972,37, 323–355. · Zbl 0241.92025
[22] Spaeth, H. J. & Guthery, S. B. The use and utility of the monotone criterion in multidimensional scaling.Multivariate Behavioral Research, 1969,4, 501–515.
[23] Spang, H. A. A review of minimization techniques for nonlinear functions.SIAM Review, 1962,4, 343–365. · Zbl 0112.12205
[24] Spence, I Multidimensional scaling: An empirical and theoretical investigation. Unpublished Ph.D. Thesis, University of Toronto, 1970.
[25] Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.
[26] Whitley, V. M. Problems in multidimensional scaling. Unpublished Ph.D. Thesis, University of California at Irvine, 1971. · Zbl 0215.35704
[27] Wilde, D. J.Optimum seeking methods. Englewood Cliffs, New Jersey: Prentice Hall, 1964. · Zbl 0136.14601
[28] Young, F. W. A FORTRAN IV program for nonmetric multidimensional scaling. L. L. Thurstone Psychometric Laboratory Report No. 56, March 1968, University of North Carolina, Chapel Hill, N. C.
[29] Young, F. W. Nonmetric multidimensional scaling: Recovery of metric information.Psychometrika, 1970,35, 455–473.
[30] Young, F. W. & Appelbaum, M. Nonmetric multidimensional scaling: The relationship of several methods. L. L. Thurstone Psychometric Laboratory Report No. 71, November 1968, University of North Carolina, Chapel Hill, N. C.
[31] Young, G. & Householder, A. S. Discussion of a set of points in terms of their mutual distances.Psychometrika, 1938,3, 19–22. · JFM 64.1302.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.