Finite element solution of non-linear heat conduction problems with special reference to phase change. (English) Zbl 0279.76045


76R99 Diffusion and convection
76T99 Multiphase and multicomponent flows
35K55 Nonlinear parabolic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
Full Text: DOI


[1] Zienkiewicz, The Engineer 220 pp 507– (1965)
[2] Zienkiewicz, Int. J. num. Meth. Engng 2 pp 61– (1970)
[3] The Finite Element Method in Engineering Science, 2nd edn., McGraw-Hill, London (1971).
[4] Wilson, Nuclear Engng Design 4 pp 276– (1966)
[5] Aguirre-Ramirez, Int. J. num. Meth. Engng 7 pp 345– (1973)
[6] Beckett, J. Heat Transfer 95 pp 126– (1973)
[7] and , ’Spontaneous ignition. Finite element solutions for steady and transient conditions’, Research Report, University of Wales, Swansea (1972).
[8] Lees, Maths. Comp. 20 pp 516– (1966)
[9] Bonacina, Int. J. Heat Mass Transfer 16 pp 581– (1973)
[10] Bonacina, Int. J. Heat Mass Transfer 16 pp 1825– (1973)
[11] Analytical Heat Diffusion Theory, Academic Press, New York (1968).
[12] Budhia, Int. J. Heat Mass Transfer 16 pp 195– (1973) · Zbl 0261.76057
[13] Rathjen, J. Heat Transfer 93 pp 101– (1973)
[14] Haji-Sheikh, J. Heat Transfer 89 pp 121– (1967)
[15] and , ”Congélation unidimensionelle d’un échantillon de sable sature d’eau in ’Phènomènes de Transport avec Changement de Phase Dan les Milieux Poreux au Colloidaux”, 149-164, Ed. C. N. R. S., Paris (1967).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.