Jakubik, Jan Quasiorder on systems of directed sets. (English) Zbl 0281.06003 Mat. Čas., Slovensk. Akad. Vied 24, 173-177 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 06A06 Partial orders, general 06B05 Structure theory of lattices 06A05 Total orders × Cite Format Result Cite Review PDF Full Text: EuDML References: [1] BENADO M.: Les ensembles partiellement ordonnées et le théorème de raffinement de Schreier. II. Czechosl. Math. J. 5, 1955, 308-344. · Zbl 0068.25902 [2] BIRKHOFF G.: Lattice theory. third edition. Amer. Math. Soc. Colloquium Publications Vol. XXV, 1967, Providence. · Zbl 0153.02501 [3] GINSBURG S., ISBELL J. R.: The category of cofìnal types. I. Trans. Amer. Math. Soc. 116, 1965, 386-393. · Zbl 0212.32602 · doi:10.2307/1994123 [4] ISBELL J. R.: Th\? category of cofinal types. II. Trans. Amer. Math. Soc. 116, 1965, 393-416. · Zbl 0212.32701 · doi:10.2307/1994124 [5] LAVER R.: On Fraissé’s order type conjectur\?. Ann. Math. 2 (93), 1971, 89-111. · Zbl 0208.28905 · doi:10.2307/1970754 [6] SCHMIDT J.: Konfinalität. Z. math. Logik und Grundl. Math. J, 1955, 271-303. · Zbl 0067.02903 · doi:10.1002/malq.19550010405 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.