×

Discrepancy and convex programming. (English) Zbl 0281.10027


MSC:

11K06 General theory of distribution modulo \(1\)
11J71 Distribution modulo one
52A05 Convex sets without dimension restrictions (aspects of convex geometry)
90C25 Convex programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bhattacharya, R. N., Rates of weak convergence for the multidimensional central limit theorem, Theor. Probability Appl., 15, 68-86 (1970) · Zbl 0216.46302 · doi:10.1137/1115005
[2] Hlawka, E., Discrepancy and uniform distribution of sequences, Compositio Math., 16, 83-91 (1964) · Zbl 0139.27903
[3] Hlawka, E., Uniform distribution modulo 1 and numerical analysis, Compositio Math., 16, 92-105 (1964) · Zbl 0146.27602
[4] Korobov, N. M., Teoretikočislovye metody w riblizhennom analize (Numbertheoretical methods in numerical analysis) (1963), Moscow: Fizmatgiz, Moscow
[5] Niederreiter, H., Almost-arithmetic progressions and uniform distribution, Trans. Amer. Math. Soc., 161, 283-292 (1971) · Zbl 0219.10040 · doi:10.2307/1995943
[6] O’Neil, P. E., A new criterion for uniform distribution, Proc. Amer. Math. Soc., 24, 1-5 (1970) · Zbl 0224.10054 · doi:10.2307/2036683
[7] Zaremba, S. K., The mathematical basis of Monte Carlo and quasi-Monte Carlo methods, SIAM Rev., 10, 303-314 (1968) · doi:10.1137/1010056
[8] Zaremba, S. K., La discrépance isotrope et l’intégration numérique, Ann. Mat. Pura Appl., 37, IV, 125-136 (1970) · Zbl 0212.17601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.