×

An implicit function theorem for small divisor problems. (English) Zbl 0281.35002


MSC:

35A35 Theoretical approximation in context of PDEs
58C15 Implicit function theorems; global Newton methods on manifolds
70F15 Celestial mechanics
70H20 Hamilton-Jacobi equations in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20 – 63. · Zbl 0070.38603 · doi:10.2307/1969989
[2] A. N. Kolmogorov, Théorie générale des systèmes dynamiques et mécanique classique, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 315 – 333 (French).
[3] V. I. Arnol\(^{\prime}\)d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91 – 192 (Russian).
[4] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1 – 20. · Zbl 0107.29301
[5] Jürgen Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824 – 1831. · Zbl 0104.30503
[6] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), I: pp, 265-315, II: pp. 499-535. MR 33 #7667; 34 #6280. · Zbl 0144.18202
[7] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher; Notes on Mathematics and its Applications. · Zbl 0203.14501
[8] Francis Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École Norm. Sup. (4) 5 (1972), 599 – 660 (French). · Zbl 0246.58006
[9] Howard Jacobowitz, Implicit function theorems and isometric embeddings, Ann. of Math. (2) 95 (1972), 191 – 225. · Zbl 0214.12904 · doi:10.2307/1970796
[10] L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561 – 576. Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. · Zbl 0257.35001
[11] Helmut Rüssmann, Kleine Nenner. II. Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 1 – 10 (German). · Zbl 0255.30003
[12] Jürgen Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of Mathematics Studies, No. 77. · Zbl 0271.70009
[13] S. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, Dissertation, New York University, New York, June, 1971. · Zbl 0257.34048
[14] S. Sternberg, Celestial mechanics, Part II, Benjamin, New York, 1969. · Zbl 0194.56702
[15] E. Zehnder, The Moser-Nash implicit function theorem for small divisor problems (to appear). · Zbl 0384.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.