×

Solution of the Schrödinger equation in terms of classical paths. (English) Zbl 0281.35029


MSC:

35J10 Schrödinger operator, Schrödinger equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dietrich, K., (The Structure of Nuclei (1972), IAEA: IAEA Vienna), 373
[2] A. MichaudonAdvances in Nucl. Phys.6J. R. NixAnn. Rev. Nucl. Sci.22; A. MichaudonAdvances in Nucl. Phys.6J. R. NixAnn. Rev. Nucl. Sci.22
[3] Balian, R.; Bloch, C., Ann. Phys. (N.Y.), 69, 76 (1972), hereafter referred to as I, II, III
[4] Balian, R.; De Dominicis, C., Ann. Phys. (N.Y.), 62, 229 (1971), Appendix C, giving a perturbative treatment valid even in the region of the poles of \(G\)
[5] Pechukas, P., J. Chem. Phys., 57, 5577 (1972)
[6] Pippard, A. B., (Ziman, J. M., The Physics of Metals. 1. Electrons (1969), Cambridge Univ. Press: Cambridge Univ. Press New York), 113
[7] Miller, W. H., J. Chem. Phys., 56, 38 (1972)
[8] Gutzwiller, M., J. Math. Phys., 12, 343 (1971)
[9] Berry, M. V.; Mount, K. E., Rep. Progr. Phys., 35, 315 (1972), Extensive references on the semiclassical methods may be found in the recent review article by
[10] Balian, R.; Bloch, C., Ann. Phys. (N.Y.), 63, 592 (1971), the present work is a continuation of this paper, hereafter referred to as I’
[11] Hohenberg, P.; Kohn, W., Phys. Rev. B, 136, 864 (1966)
[12] Fröman, N.; Fröman, P. O., JWKB Approximation (1965), Amsterdam · Zbl 0129.41907
[13] Freed, K. F., J. Chem. Phys., 56, 692 (1972)
[14] Pechukas, P., Phys. Rev., 181, 174 (1969)
[15] Broglia, R. A.; Winther, A., Physics Reports, 4C, 153 (1972)
[16] Marcus, R. A., J. Chem. Phys., 54, 3965 (1971)
[17] Rubinow, S. I.; Keller, J. B., Phys. Rev., 131, 2789 (1963)
[18] Pokrovskii, V. L.; Savvinnykh, S. K.; Ulinich, F. R., Soviet Physics JETP, 7, 1119 (1958)
[19] Maslov, V. P., Original in russian (1965), Moscow · Zbl 0528.47034
[20] Dagens, L., J. Physique, 30, 593 (1969)
[21] Norcliffe, A., J. Phys. A, 6, L127 (1973)
[22] Friedel, J., Philos. Mag., 43, 153 (1952) · Zbl 0046.45201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.