×

Locally convex topologies on spaces of continuous vector functions. (English) Zbl 0281.46032


MSC:

46E40 Spaces of vector- and operator-valued functions
46G10 Vector-valued measures and integration
Full Text: DOI

References:

[1] Buck, Michigan Math. J. 5 pp 95– (1958)
[2] Cooper, Proc. Amer. math. Soc. 30 pp 583– (1971)
[3] Fremlin, Proc. London math. Soc. (3) 25 pp 115– (1972)
[4] De Rugy, Israel J. of Mat. 12 pp 2– (1972)
[5] Johnson, Math. Ann. 157 pp 1– (1970)
[6] Katsaras, Annali di Matematica
[7] Katsaras, Trans. Amer. math. Soc. 206 pp 313– (1975)
[8] Katsaras, Bull. Soc. math. Grèce 15 pp 13– (1974)
[9] Kernels and operators (submitted).
[10] Katsaras, Pacific J. of Math. 56 pp 547– (1975) · Zbl 0272.47016 · doi:10.2140/pjm.1975.56.547
[11] Kirk, Proc. Acad. Sci., Amsterdam, A 72 pp 172– (1969)
[12] Kirk, Trans. Amer. math. Soc. 184 pp 1– (1973)
[13] The strict topology and the ordered vector space C(X) (preprint).
[14] Mossiman, Can. J. Math. 5 pp 873– (1972) · Zbl 0219.46003 · doi:10.4153/CJM-1972-087-2
[15] Sentilles, Trans. Amer. math. Soc. 142 pp 141– (1969)
[16] Sentilles, Trans. Amer. math. Soc. 168 pp 311– (1972)
[17] Sentilles, Pacific J. of Math. 34 pp 529– (1970) · Zbl 0205.40901 · doi:10.2140/pjm.1970.34.529
[18] Sentilles, Bull. Amer. math. Soc. 76 pp 107– (1970)
[19] Summers, Trans. Amer. math. Soc. 151 pp 323– (1970)
[20] Varadarajan, Amer. Math. Soc. Transl. (2) 48 pp 161– (1965) · doi:10.1090/trans2/048/10
[21] Wells, Michigan Math. J. 12 pp 119– (1965)
[22] The strict topology, separable measures, and paracompactness (preprint). · Zbl 0244.46028
[23] Wiweger, Studia Math. 20 pp 47– (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.