×

zbMATH — the first resource for mathematics

Jordan algebras and connections on homogeneous spaces. (English) Zbl 0281.53029

MSC:
53C05 Connections, general theory
17C20 Simple, semisimple Jordan algebras
53C30 Differential geometry of homogeneous manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349 – 462 (3 plates) (Russian). · Zbl 0048.01701
[2] Nathan Jacobson, Structure of rings, American Mathematical Society, Colloquium Publications, vol. 37, American Mathematical Society, 190 Hope Street, Prov., R. I., 1956. · Zbl 0073.02002
[3] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[4] Bertram Kostant, On holonomy and homogeneous spaces, Nagoya Math. J. 12 (1957), 31 – 54. · Zbl 0109.14603
[5] O. Loos, Symmetric spaces. II, Benjamin, New York, 1969. MR 39 #365b. · Zbl 0175.48601
[6] Kevin McCrimmon, On Herstein’s theorems relating Jordan and associative algebras, J. Algebra 13 (1969), 382 – 392. · Zbl 0224.16027 · doi:10.1016/0021-8693(69)90081-7 · doi.org
[7] Katsumi Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33 – 65. · Zbl 0059.15805 · doi:10.2307/2372398 · doi.org
[8] Arthur A. Sagle, On simple extended Lie algebras over fields of characteristic zero, Pacific J. Math. 15 (1965), 621 – 648. · Zbl 0134.26904
[9] Arthur A. Sagle, Some homogeneous Einstein manifolds, Nagoya Math. J. 39 (1970), 81 – 106. · Zbl 0198.54801
[10] A. Sagle and D. J. Winter, On homogeneous spaces and reductive subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 128 (1967), 142 – 147. · Zbl 0153.04502
[11] A. A. Sagle and J. R. Schumi, Multiplications on homogeneous spaces, nonassociative algebras and connections, Pacific J. Math. 48 (1973), 247 – 266. · Zbl 0285.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.