×

zbMATH — the first resource for mathematics

Relative densities of semimartingales. (English) Zbl 0281.60053

MSC:
60G05 Foundations of stochastic processes
60J45 Probabilistic potential theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Airault, H.: Théorème de Fatou et frontière de Martin. J. of Functional Analysis12, 418-455 (1973) · Zbl 0256.60052 · doi:10.1016/0022-1236(73)90005-0
[2] Athreya, K.B., Kurtz, T.G.: A generalization of Dynkin identity and some applications. The Annals of Probability1, 570-579 (1973) · Zbl 0264.60048 · doi:10.1214/aop/1176996886
[3] Blumenthal, R.M., Getoor, R.K.: Markov Process and Potential Theory. New York-London: Academic Press 1968 · Zbl 0169.49204
[4] Dellacherie, C.: Capacités et Processus Stochastiques. Berlin-Heidelberg: Springer 1972 · Zbl 0246.60032
[5] Doleans, C.: Existence du processus croissant naturel associé a un potentiel de la classe (D). Z. Wahrscheinlichkeitstheorie verw. Gebiete9, 309-314 (1968) · Zbl 0164.47201 · doi:10.1007/BF00531754
[6] Doob, J.L.: Stochastic Processes. New York: John Wiley and Sons 1953 · Zbl 0053.26802
[7] Doob, J.L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France85, 431-458 (1957) · Zbl 0097.34004
[8] Dynkin, E.B.: Markov Processes. Berlin-Göttingen-Heidelberg: Springer 1965 · Zbl 0132.37901
[9] Dynkin, E.B.: Excessive functions and space of exits of a Markov process. Theor. Probability Appl.14, 37-54 (1969)
[10] Fisk, D.L.: Quasi-martingales. Trans. Amer. Math. Soc.120 359-389 (1965) · Zbl 0133.40303 · doi:10.1090/S0002-9947-1965-0192542-5
[11] Föllmer, H.: Feine Topologie am Martinrand eines Standard-Prozesses. Z. Wahrscheinlichkeitstheorie verw. Gebiete12, 127-144 (1969) · Zbl 0172.21601 · doi:10.1007/BF00531645
[12] Föllmer, H.: The exit measure of a supermartingale. Z. Wahrscheinlichkeitstheorie verw. Gebiete21, 154-166 (1972) · Zbl 0231.60033 · doi:10.1007/BF00532472
[13] Föllmer, H.: On the representation of semimartingales. The Annals of Probability.1, 580-589 (1973) · Zbl 0265.60044 · doi:10.1214/aop/1176996887
[14] Hansen, W.: Konstruktion von Halbgruppen und Markoffschen. Prozessen. Inventiones math.3, 179-214 (1967) · Zbl 0158.12803 · doi:10.1007/BF01425400
[15] Helms, L.L.: Biharmonic functions and Brownian motion. J. Appl. Probability4, 130-136 (1967) · Zbl 0314.60059 · doi:10.2307/3212305
[16] Krickeberg, K.: Convergence of martingales with a directed index set. Trans. Amer. Math. Soc.83, 313-337 (1956) · Zbl 0083.27501 · doi:10.1090/S0002-9947-1956-0091328-4
[17] Krickeberg, K.: Stochastische Konvergenz von Semimartingalen. Math. Z.66, 470-486 (1957) · Zbl 0083.27601 · doi:10.1007/BF01186623
[18] Meyer, P.A.: Probability and Potentials. Waltham. Mass Toronto-London: Blaisdell 1966 · Zbl 0138.10401
[19] Meyer, P.A.: Intégrales stochastiques. Sem. Prob.1, p. 72-163. Lectures Notes Mathematics.39 Berlin-Heidelberg-New York: Springer 1967
[20] Mokobodzki, G.: Densité relative de deux potentiels comparables. Sem. Prob.4, p. 170-194. Lectures Notes Mathematics124. Berlin-Heidelberg-New York: Springer 1969 · Zbl 0194.13801
[21] Orey, S.:F-processes. Proc Fifth Berkeley Symp. Math. Statist. Prob.2, Univ. California Press. p. 301-313 (1967) · Zbl 0201.49902
[22] Parthasarathy, K.R.: Probability measures on metric spaces. New York-London: Academic Press 1967 · Zbl 0153.19101
[23] Riesz, F.: Sur l’existence de la derivee des fonctions d’une variable reelle et des fonctions d’intervalle, Verhandl. Internat. Math. Kongress Zürich I, 258-269, 1932 · JFM 58.1059.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.