zbMATH — the first resource for mathematics

An analogue of Stickelberger’s theorem for the higher K-groups. (English) Zbl 0282.12006

11R18 Cyclotomic extensions
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
Full Text: DOI EuDML
[1] Borel, A.: Cohomologie réelle stable des groupesS-arithmétiques classiques, C. R. Acad. Sci. Paris,274, 1700-1702 (1972) · Zbl 0235.57015
[2] Borevich, Z., Shafarevich, I.: Number Theory (translated from Russian), New York: Academic Press 1966 · Zbl 0145.04902
[3] Coates, J.: OnK 2 and some classical conjectures in algebraic number theory. Ann. of Math.95, 99-116 (1972) · Zbl 0245.12005
[4] coates, J.:K-theory and Iwasawa’s analogue of the Jacobian In: AlgebraicK-theory II, p. 502-520. Lecture Notes in Mathematics342. Berlin-Heidelberg-New York: Springer 1973
[5] Coates, J., Lichtenbaum, S.: Onl-adic zeta functions. Ann. of Math98, 498-550 (1973) · Zbl 0279.12005
[6] Coates, J., Sinnott, W.: Onp-adicL-functions over real quadratic fields (to appear) · Zbl 0305.12008
[7] Garland, H.: A finiteness theorem for theK 2 of a number field. Ann. of Math.94, 534-548 (1971) · Zbl 0247.12103
[8] Iwasawa, K.: Onp-adicL-functions. Ann. of Math.89, 198-205 (1969) · Zbl 0186.09201
[9] Leopoldt, H.: Zur Arithmetik in abelschen Zahlkörpern. J. reine angew. Math.209, 54-71 (1962) · Zbl 0204.07101
[10] Lichtenbaum, S.: Values of zeta functions, étale cohomology, and algebraicK-theory. In: AlgebraicK-theory II, p. 489-501. Lecture Notes in Mathematics342 Berlin-Heidelberg-New York: Springer 1973
[11] Milnor, J.: Introduction to algebraicK-theory. Ann. of Math. Studies,72 (1971) · Zbl 0237.18005
[12] Quillen, D.: Finite generation of the groupsK i of rings of algebraic integers. In: AlgebraicK-theory I, p. 179-198, Lecture Notes in Mathematics341, Berlin-Heidelberg-New York: Springer 1973
[13] Quillen, D.: Higher algebraicK-theory I. In: AlgebraicK-theory I, p. 85-147. Lecture Notes in Mathematics341. Berlin-Heidelberg-New York: Springer 1973
[14] Rideout, D.: A generalization of Stickelberger’s theorem. Ph. D. thesis, McGill University, Montreal 1970
[15] Siegel, C.: Über die Fourierschen Koeffizienten von Modulformen. Göttingen Nach.3, 15-56 (1970) · Zbl 0225.10031
[16] Tate, J.: Letter from Tate to Iwasawa on a relation betweenK 2 and Galois cohomology. In: AlgebraicK-theory II, p. 524-527. Lecture Notes in Mathematics342 Berlin-Heidelberg-New York: Springer 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.